QUINNIPIAC RIVER BASIN TOWN OF WOLCOTT

BRISTOL FISH AND GAME CLUB DAM CT-00299

The original hardcopy version of this report contains color photographs and/or drawings. For additional information on this report please email

NATIONAL DAM INSPECTION PROGRAM CORPS OF ENGINEERS

U.S. Army Corps of Engineers New England District Email: Library@nae02.usace.army.mil

PHASE I INSPECTION REPORT

NATIONAL PROGRAM OF INSPECTION OF DAMS

Name of Dam: BRISTOL FISH AND GAME CLUB DAM Inventory Number: CT 00299 CONNECTICUT State: NEW HAVEN County: Town: WOLCOTT Stream: CUSSGUTTER Owner: BRISTOL FISH AND GAME CLUB
Date of Inspection: APRIL 29, 1981 Inspection Team: PETER M. HEYNEN, P.E. MURALI ATLURU, P.E. JAY A. COSTELLO

Bristol Fish and Game Club Dam is located on Cussgutter Brook (Quinnipiac River Basin) in a rural area in the Town of Wolcott, County of New Haven, State of Connecticut. The dam is shown on the Bristol USGS Quandrangle Map, having coordinates latitude N41°37.5' and longitude W72 56.0'. The drainage area is approximately 0.2 square miles and the maximum impoundment to the top of the dam is 130 acre-feet. Elevations given below are not NGVD, but correspond to elevations given on existing plans.

As shown on Sheet B-1, the dam is an earth embankment founded on bedrock and measuring approximately 600 feet long, 22.5 feet high (26.5 structural height), and 12 feet wide at the top. The elevation at the top of the dam is 738.5, which is 4.5 feet above the principal spillway crest. A 5 foot wide by 16 foot high bentonite clay core extends for the length of the dam. This core is placed on the bedrock foundation (elevation 712.0) and rises to elevation 728.0 along the upstream side of the cutoff trench. The upstream slope of the dam is inclined at 3 horizontal to 1 vertical and the downstream slope is inclined at 2 horizontal to 1 vertical. The slopes and top of the embankment have a grass cover, with some riprap along the waterline.

The principal spillway is a concrete drop inlet located on the upstream slope approximately 225 feet from the left end of the dam. This inlet consists of a 4 foot by 1.5 foot (I.D.) concrete riser and a 16 inch reinforced concrete outlet pipe, extending from the riser to the toe of the embankment. The riser has a crest elevation of 734.0, a bottom elevation of 720.3 and the pipe outlets at invert elevation 716.8. There are two vertical 4 foot by 1 foot openings at the top of the riser structure, which allow water to flow into the chamber and out the 16 inch RCP. The low-level outlet, also part of this spillway structure, consists of a 15 inch ACCMP which

expenses of 30 feet from the riser chamber to the toe of the upstream slope, at invert elevation 121.0. A 14 inch low-level intake valve is located just upstream of the concrete riser and can be operated with the stem which extends to the riser hood, along the upstream side of the riser chamber.

The emergency spillway is a grass lined channel extending around the right end of the dam. The channel measures approximately 20 feet wide, with side slopes of 3 horizontal to 1 vertical and a crest elevation of 735.0. A small earth dike, measuring about 3 feet high by 80 long, extends along the left side of the spillway.

Based upon the visual inspection performed April 29, 1981, the project is assessed as being in good condition. The following features which could influence the future condition and/or stability of the dam were identified.

- If the seepage at the toe of the dam is coming through the embankment, it could begin to carry material from the interior of the dam, creating a piping situation and thereby threatening the safety of the structure.
- The lack of proper riprap protection on the upstream slope will lead to further sloughing and erosion of this slope, which may provide an area for overtopping during flood conditions.
- 3. Spalling of the concrete at the upstream and downstream sides of the riser hood at the drop inlet openings (Photo 3), could lead to failure of the hood or riser structure, possibly blocking the spillway during periods of high flows.
- 4. Animal burrows can provide seepage paths through the impervious core, which can promote piping and possibly lead to failure of the dam.

It is recommended that the owner retain a registered professional engineer qualified in dam design and inspection to perform services pertaining to the following items. The engineer should establish recommended corrective procedures which should then be promptly implemented by the owner.

 Monitoring and evaluation of seepage at the toe of the embankment to determine its origin, affect on the safety of the structure, and any necessary corrective action.

- 2. Regrading of the upstream slope and placement of sufficient riprap to protect against erosion and sloughing of this slope by wave action. This riprap should be placed between expected high and low water elevations, and should extend around the right end of the embankment to protect against erosion should the emergency spillway be activated.
- 3. Repairing spalled concrete at the sides of the riser structure hood, along the waterline where water enters the drop inlet.
- 4. Removing trees to a distance of 10 feet from the toe of the dam with proper backfilling and replacement of protective cover.
- 5. Elimination of burrowing animals in the embankment, backfilling the burrows and replacement of protective cover.

Also, the owner should initiate a formal program of operation and maintenance procedures, including a monthly inspection by the owner or owner representative and proper documentation to provide accurate records for future reference. A comprehensive program of inspection by a registered professional engineer qualified in dam design and inspection should be instituted on a biennial basis.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
. REPORT NUMBER 2, GOVT ACCESSION NO	. 3. RECIPIENT'S CATALOG NUMBER
CT 00299 ADA 144001	1
. TITLE (and Subsisse)	5. TYPE OF REPORT & PERIOD COVERED
Bristol Fish and Game Club Dam	INSPECTION REPORT
NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL	6. PERFORMING ORG. REPORT NUMBER
AUTHOR(a)	S. CONTRACT OR GRANT NUMBER(*)
U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT HUMBERS
CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
DEPT. OF THE ARMY, CORPS OF ENGINEERS	Arpil 1981
NEW ENGLAND DIVISION, NEDED	13. NUMBER OF PAGES
424 TRAPELO ROAD, WALTHAM, MA. 02254 MONITORING AGENCY NAME & ADDRESS/II different from Controlling Office)	15. SECURITY CLASS. (of this report)
MUNITURING AGENCY NAME & AUDKESS(II dilletent from Controlling Office)	is. accurity CCR33. (or intersport)
	UNCLASSIFIED
	184. DECLASSIFICATION/DOWNGRADING

APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number) DAMS, INSPECTION, DAM SAFETY,

Quinnipiac River Basin Town of Wolcott

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
Bristol Fish and Game Club Dam is located on Cussgutter Brook in a rural area. The dam is an earth embankment founded on bedrock and measuring approximately 600 feet long, 22.5 ft. high and 12 feet wide at the top. Based on the visual inspection the project is assessed as being in good condition.

OVERVIEW PHOTO (April, 1981)

US ARMY ENGINEER DIV. NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASS.

CAHN ENGINEERS INC. WALLINGFORD, CONN. ENGINEER NATIONAL PROGRAM OF

INSPECTION OF NON-FED DAMS

Bristol Fish & Game Club Dam

Cussgutter Brook

Wolcott

CONNECTICUT

DATE<u>June 1981</u>

CE# 27785KH

PAGE _IX

VISUAL INSPECTION CHECK LIST PARTY ORGANIZATION

PROJECT Bristol Fish & Gam	e Club Dam	DATE: Ap	ril 29,	1981
		TIME: 12:	<u> 30 P.M -</u>	2:30 P.M.
		WEATHER:_	Cloudy	, 70°F
		W.S. ELEV	. <u>734.2</u> ∪	.S. <u>A/A</u> DN.S
PARTY:	INITIALS:		DISCIP	LINE:
1. Peter M. Heynen	РМН		Cahn-	Geotechnical
2. Murali Atlury	MA		DTC -	H/H
3. Jay A. Costello				· Geotechnica!
4				
5	<u> </u>			
6		·		
PROJECT FEATURE		INSPECTED	ВУ	REMARKS
1. Embankment	P	MH, JAC, M	1A	A-2
2. Principal Spillway (Drop In Ict)	DAT HMA	AM	<u>A-3</u>
3. Auxiliary Spillway	· · · · · · · · · · · · · · · · · · ·	PMH, JAC	MA	A-4
4. Outlet Structure	ind Channel	PMH, JA	., MA	A-5
5			···	laging and the latest the latest to the lat
6				
7	······································	· · · · · · · · · · · · · · · · · · ·		·
8.	······································	· · · · · · · · · · · · · · · · · · ·		······································
9.		· •••		
10			· · · · · · · · · · · · · · · · · · ·	
11.				
12.			····	

PERSODIC INSPECTION CHECK LIST

PROJECT Bristol Fish & Game Club Dom DATE April 29 1981

Page A-2

PROJECT FEATURE Earth Embonkment BY PMH, JAC, MA

		
AREA EVALUATED		CONDITION
DAM EMBANKMENT		
Crest Elevation		738.5
Current Pool Elevation		734.2
Maximum Impoundment to Date		Unknown
Surface Cracks		None Observed - Two animal
Pavement Condition		N/A
Movement or Settlement of Crest		None Observed
Lateral Movement		
Vertical Alignment		Appears Good
Horizontal Alignment		
Condition at Abutment and at Concrete Structures		Good .
Indications of Movement of Structural Items on Slopes		None
Trespassing on Slopes		4/s slope at riser structure
Sloughing or Erosion of Slopes or Abutments		Sloughing along waterline and us slope at riser structure
Rock Slope Protection-Riprap Failures		Insufficient riprap at waterline
Unusual Movement or Cracking at or Near Toes		None Observed
Unusual Embankment or Downstream Seepage		Seepage less than 5 gpm; 20' left of outlet and 28'd/s of
Piping or Boils) outlet
Foundation Drainage Features	Ì	None Observed
Toe Drains		(Tione Joseff Cd
Instrumentation System)

PERIODIC INSPECTION CHECK LIST

Page A-3

PROJECT Bristol Fish & Game Club Dam DATE April 24, 1981

PROJECT FEATURE Drop Inlet Riser Structure BY PMH, JAC, MA

	AREA EVALUATED	CONDITION
ניטס	LET WORKS-CONTROL TOWER	Concrete riser structure; crest elevation = 734.0
a)	Concrete and Structural	Elevation - 154.0
	General Condition	Fair
	Condition of Joints	Good
: <u>{</u> {	Spalling	At each end near waterline -
	Visible Reinforcing	aggregate visible
	Rusting or Staining of Concrete	None Observed
	Any Seepage or Efflorescence	
	Joint Alignment	Appears Good
	Unusual Seepage or Leaks in Gate Chamber	Not observed
	Cracks	None observed
	Rusting or Corrosion of Steel	Rusting of trashrock bar
b)	Mechanical and Electrical	
	Air Vents	
	Float Wells	N/A
	Crane Hoist	
	Elevator	
	Hydraulic System	
	Service Gates	30 foot long, 15 inch ACCMP intake (with 14 inch value enters uls side
	Emergency Gates	Jof riser chamber at the base. Outlets by 16 inch RCP at als
	Lightning Protection System) side of riser chamber.
	Emergency Power System	ALM
	Wiring and Lighting System	

PERIODIC INSPECTION CHECK LIST

Page / - /-

PROJECT Bristol Fish & Game Club Dam DATE April 29, 1951

PROJECT FEATURE Auxiliary Spillway BY PMH, JAC MA

AREA EVALUATED	CONDITION
OUTLET WORKS-SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS	Grass lined earth channel @ right end of dom
a) Approach Channel	
General Condition	Good
Loose Rock Overhanging Channel	None
Trees Overhanging Channel) NOTICE
Floor of Approach Channel	Flat-free of debris
b) Weir and Training Walls	
General Condition of Concrete	
Rust or Staining	
Spalling	N/A- earth channel
Any Visible Reinforcing	grass cover-good conditions
Any Seepage or Efflorescence	side slopes - good
Drain Holes	earth dike left side - good
c) <u>Discharge Channel</u>	no riprap at right end dam embankment
General Condition	
Loose Rock Overhanging Channel	Channel discharges to
Trees Overhanging Channel	woods at right end of
Floor of Channel	dam. Discharge then flows to outlet channel.
Other Obstructions) to outlet channel.

PERIODIC INSPECTION CHECK LIST

Page A-5 PROJECT Bristol Fish & Gome Club Dam DATE April 29 1981

PROJECT FEATURE 16" RCP OUTLET BY PMH, JAC, MA

		Managangangan 1886-berah kuma kama ayayi sebah membangan dalam berah membangan sebah dalam berah dalam berah d Managangan membandan dalam dalam dalam sebah dalam dalam dalam dalam dalam berah dalam berah dalam dalam dalam
AREA EVALUATED		CONDITION
OUTLET WORKS-OUTLET STRUCTURE AND OUTLET CHANNEL		"RCP from riser chamber to is toe of embankment (71±1)
General Condition of Concrete	P	ipe appears in good condition,
Rust or Staining		hard to observe
Spalling		
Erosion or Cavitation		N/A
Visible Reinforcing		
Any Seepage or Efflorescence		
Condition at Joints		Could not be observed
Drain Holes		A/N
Channel		
Loose Rock or Trees Overhanging Channel		Some small trees
Condition of Discharge Channel		Nariow, natural streambed.
		fair condition
·		
,		
	1	
	- 1	

Photo 1-Lipstream slope from left abutment. Minor sloughing of the upstream slope is occurring at the waterline. Drop inlet can be seen at center of dam (April, 1981).

Photo 2 - Top of dam and downstream slope from left abutment (April, 1981).

US ARMY ENGINEER DIV. NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASS.

CAHN ENGINEERS INC. WALLINGFORD, CONN. ENGINEER NATIONAL PROGRAM OF INSPECTION OF

NON-FED. DAMS

BRISTOL FISH GAME CUB
CUSSGUTTER BROOK
WOLCOTT, CT
CE# 27785 KH
DATE JUNE 1981 PAGE C-1

Photo 3 - Top of concrete riser structure. Casing for low-level outlet valve stem is located on upstream side of riser (April, 1981).

Photo 4- Emergency spillway at right end of dam (April, 1981).

US ARMY ENGINEER DIV. NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASS.

CAHN ENGINEERS INC. WALLINGFORD, CONN. ENGINEER NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS

BRISTOL FISHE GAME CLUB
CUSSGUTTER BROOK
WOLCOTT, CT.
CE# 27785 KH
DATEJUNE'81 PAGE C-2

A DAM INSPECTION PROGRAM LEGISLE I INSPECTION REPORT

IDENTIFICATION AND	CT-00280
NAME OF DAM:	Schwartz Pond Dam
TOWN:	Suffield
COUNTY AND STATE:	Hartford County, Connecticut
STREAM: Stony	Brook, a tributary of Connecticut River
DATE OF INSPECTION:	December 17, 1980

BRIEF ASSESSMENT

The Schwartz Pond Dam is a masonry and concrete structure approximately 128 ft. long, with a top width of 2 ft. and a maximum height of 16 ft.

There is a 3'x4' regulating outlet controlled by a sluice gate which is currently inoperable. The spillway, an overflow portion of the dam, is 86 ft. long with its crest 5.2 ft. below the top of the dam.

Based on visual inspection, the Schwartz Pond Dam is judged to be in fair condition. A feature found existing that could affect the stability of the dam is the deteriorating concrete at the wingwalls, regulating outlet and west dam embankment.

It is recommended that the owner arrange for a qualified registered engineer to do the following within one year of receipt of this report:

Photo 7-Erosion and sloughing of upstream slope near drop inlet. Note sparse riprap at waterline (April, 1981).

Photo8-Seepage at right side of outlet discharge channel. Seepage flows from wet area at toe of embankment to the right of the outlet pipe (April, 1981).

US ARMY ENGINEER DIV. NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASS.

CAHN ENGINEERS INC. WALLINGFORD, CONN. ENGINEER NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS BRISTOL FISH GAME CLUB
CUSSGUTTER BROOK
WOLCOTT, CT.
CE# 07785KH
DATEJUNE 381 PAGE C-4

PROJECT. NON FEDERAL DAM INSPECTION PROJECT NO. 81-20-11 SHEET	1 OF 20
NEW ENGLAND DIVISION COMPUTED BY Jund' dlam DA	TE 5/15/81
BRISTOL FISH AND GAME CLUB DAM CHECKED BY & BUTCH Bath DA	
PERFORMANCE AT PEAK FLOOD CONDITIONS	
PROBABLE MAXIMUM FLOOD (PMF) DETERMINATION.	
DRAINAGE AREA - 0.18 SQ.MI, PLANIMETEREI	
BRISTOL QUAD SHEET CREV	(1472)
WATERSHED CLASSIFICATION - "ROLLING" TO "MOUN"	TALMAUS
BASED UPON USGS MAP AND SITE VISIT.	74111902
13/13/PD USOIS HAT AND SITE VISITE	
PMF PEAK INFLOW-	
FOR SMALL DRAINAGE AREAS (2 SQ IN) THE	(4005)
OF ENGINEERS RECOMMENDS CSM VALUES TO BE	
GREATER THAN 2500 CFS/Sa. MI FOR THE ABOV	^-
PEAK FLOW RATE SELECTED - 2500 CFS /SAIM	:
1 PMF PEAK INFLOW = 2500 X0.18 = 45	
111 12 12 10 X 0.18 = ±0	
SIZE CLASSIFICATION-	
FOR THE PURPOSE OF DETERMINING PROJECT SIZE	TUE
MAXIMUM STORAGE FLEVATION IS CONSIDERED E	
THE STORAGE AT TOP OF DAM	920112
TOP OF DAM ELVN = 865.5*	
70E OF DAM FLUN = 843.0	
HEIGHT OF DAM 22.5 FT.	in the same and in any complete the street management
* The normal W.S elevation of the Pond is not indica	tod or
the USGS map. However, examining the contac	
the USGS map as well as elevations given in	
1958 design drawings prepared by SCS	the
normal pond elevation is Assumed to be	861NA
and 15 assumed to be the same for the	zrinci pa
SPillway crest. All other elevations are 70 ferenced	to His
assumed elevation and are obtained from the	1958
ses drawings. Cahn Inc field checked some of Key Information	rke D-

PROJECT NON FEDERAL DAM INSPECTION PROJECT	CT NO. 81-20-11 SHEET 2- OF 22
NEW ENGLAND DIVISION COMPUTED	
BRISTOL FISH AND GAME CLUB DAM CHECKED B	
	and the second s
PLANIMETERING FROM USGS MAP F	OR POND SURFACE DECAS
AT EL 2861 (Pr. Sp. 11 way crest)	
AT EL 870	= 15 Acres
AT EL 880	= 21 ACRES
A STAGE-POND AREA CURVE IS PL	OTTED (SHEET 3)
FROM THIS CURVE, POND AREA	
AVERAGE POND AREA BETWEEN	PR. SPILLWAY
CREST AND TOP OF DAT	7 = 12.7 Ac.
STORAGE BETWEEN PRINCIPA	
AND TOP OF DAM =	
STORAGE BETWEEN PRINCIPAL CREST AND POND AT EL 8	
EST. STORAGE BELOW PRISPILL	I WAY COLLY - 1 1/
ES 1. STORP OF 15 15 15 15 15 15 15 15 15 15 15 15 15	1×12×18 = 72 Ac. F7.
(b=12, h= EL. 861- EL 843 = 19	ε ')
: HAXIMUM IMPOUNDMENT TO T	:
	= 129 Ac. FT.
A STAGE - STORAGE CURVE	•
THUS ACCORDING TO CORPS	
LINESTABLES, THE BRISTO	OL CLUB DAM IS
CLASSIFIED SMALL BASED CAPACITY OF 129 ACIFT	(LIND AND ZED)
AND THE HEIGHT OF THE	
22.5 FT.	

PROJECT NON FEDERAL DAM INSPECTION PROJECT NO. 81-20-11 SHEET 4 OF 2-0
NEW ENGLAND DIVISION COMPUTED BY DATE 5/15/2
BRISTOL FISH AND GAME CLUB DAM CHECKED BY & BUTCH Bolon DATE 5/16/81
HAZARD POTENTIAL LOW HAZARD POTENTIAL
BASED UPON DAM BREACH ANALYSIS AND ACTIVITIES
BELOW THE DAM A DETAILED DISCUSSION OF
HAZARD POTENTIAL IS INCLUDED AT THE END
OF BREACH ANALYSIS SECTION OF APPENDIX D
SELECTION OF TEST FLOOD-
FOR THE SMALL SIZE AND LOW . HAZARD
POTENTIAL CLASSIFICATION, TABLE 3 OF CORPS
OF ENGINEERS RECOMMENDED GUIDELINES. THE
TEST FLOOD COULD BE IN THE 50 YEAR
TO 100 YEAR FREQUENCY RANGE
BASED UPON THE INVOLVED RISK POTENTIAL
DOWNSTREAM OF THE DAM, A TEST FLOOD
= 100 YR IS SELECTED.
1 - 1 - 1 - 1 - 1 - 5 - 11 - 11 - 5 - 11 - 5 - 11 - 5 - 11 - 5 - 11 - 5 - 11 - 5 - 11 - 5 - 1
1: TEST FLOOD PEAK INFLOW = 5. X450
= 120 CFS.
NOTE: PMF OF 450 CFS IS ESTIMATED TO RESULT
FROM 19" RUN-OFF AND A 100 YEAR
FLOOD IN CONNECTICUT IS ESTIMATED ?
RESULT FROM APPROXIMATELY 5" RUN-OFF.
7>-4

PROJECTNON	N FEDERAL DAM INSPECTION	PROJECT NO. 81-20-11 SH	EET 5 OF 2.0
NEW	N ENGLAND DIVISION	COMPUTED BY Jand. dh	DATE 5/15/8/
BRISTOL FI	ISH AND GAME CLUB DAM	CHECKED BY & Butch Balon	DATE 5/16/81
COMP	OSITE DISCHARGE T		
24	Q,	Q Q Q Q	3
7	TOP OF DAM CT.E	1:5	
LEFT EMB	580'	E1.962.0-1 120-1 R	.7. En B
	ROXIMATE POTENTIAL	OVERFLOW PROFILE NGS & CAHN INC'S FIELD	INFORMATION
	CLOOKING DO		1/4/0/5
DAM			
aj		c = 2.8 ASSUMED (FOR the + 4 = 580 . CY. EX = 865 :	_
00	ENCY SPILLWAY	C = 2.8 ASSUMED (Gras	(5)
22	= 56 H ^{3/2}	L= 20 . Cx EL = 862	
Q'	2 C4 / 312	5/2 >*	!ha
2	2 CL 5 (hb-ha) (hb-	ha	868.5
	= 0.4 × 2.8 × 3× hb	upto El. 865.5 [1862	1:3
	= 3.36 h,5/2		
	- 1 5	/2-	
SIMIL	ARLY Q' = 3.36 hb 5	5/2-	*
X NOTE	USGS RECOMMENDED	FORMULA FOR MORA	PRECISE
		ILLINED DAM/ EMBAN	1 ' ' ;
		MENT OF PEAK DISCI	
		T METHODS. USGS BI	1
1	HAPTER A 5, PAGE		
			D_ 5

PROJECTNON_FFDERAL_DAM_INSPECT			
NEW ENGLAND DIVISION	COMPUTED BY	1 dby DA	TE 5/15/8
BRISTOL FISH AND GAME CLUB DAM	CHECKED BY 3 3 10	do Tola o	ATE 5/16/81
PRINCIPAL SPILLWAY: PIPE SPILLWAY WITH:	DROP INLET		and all
29H	- (Ref: Han	1 800/5 07	HPPIERO
QPS = a \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Pipe diamet	63)	
Kb=0, Kp=0.0301	1 - 72.5	= 1.30	Sp.Fr.
FOR FULL FLOW CONDIT	1	15 JH	¥ 44 4 4
			1 · · · · · · · · · · · · · · · · · · ·
	K L 3		
LOWLEVEL OUTLET			\$
Q = CA VZgH	e e e e e e e e e e e e e e e e e e e	14" P	
8.51 H ^{01/2} = 3	SCFS FOR POOL		8 42.6(CL)
	TTOP OF DAM	El	848
THE LOW LEVEL OUTLET	1	PRINCIPAL	SPILLWAY
STRUCTURE AND ITS E			
OF THE SPILLWAY IS			
LOWLEVEL OUTLET IS CO		<i>t</i>	
ANALYSIS, WHILE THE PE			
TABULATION O	E DICTHARGE	RATES (FS)
		PRINCIPAL	70116
NGVD Q1 Q2		SP.WAY QPS	Q
42	Q2+Q2 Q2	24.10111412	9
PR-58111 961 0 0	0 - 0	0	0
862 0	6 50	. 6	58
Test Floo8 62,85 0 45	5 50		
863 0 56	7 63	9	72
864 0 158	38 196	10	206
			
			D-6

PROJECT NON FEDERAL DAM INSPECTION PROJECT NO. 81-20-11	SHEET 8 OF 20
NEW ENGLAND DIVISION COMPUTED BY And div	DATE 5/15/81
BRISTOL FISH AND GAME CLUB DAM CHECKED BY & Butch Bal	
DETERMINATION OF PEAK OUTFLOW-	
SHORTCUT ROUTING OF POND	
CORPS OF ENGINEERS GUIDELINES SURCHARGE	STORAGE
ROUTING ALTERNATIVE METHOD USED.	
FOR 120 CFS (100 YR) THE DISCHARGE RATING	h EURVA
GIVES ELVN + 863.5	
AND FROM STAGE STORAGE CURVE FOR THIS	ELVN
STORAGE = 31 Ac. FT.	· · · · · · · · · · · · · · · · · · ·
$570R$; = $\frac{31 \times 12}{0.18 \times 640}$ = 3.23 RUN-OFF	
ap = ap (1 570Ri)	
	3
The state of the s	•••
570 R 1 (1- 570 Ri) 570 Ri API CFS ELVIN 1 NC HES (1- 570 RI) 0 0.18 x 640 0 x 120 CURV	E USING B
0 2118 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
2.5 0.5 24 60 8	62.85
	63.25
	63.5
COLUMNS Q & O ARE PLOTTED ON DISCHARG	AF RATING
CURVE AND	
PEAK OUTFLOW Q = 58 CFS	
MAXIMUH STAGE - 862.85 NGVD	
70P 0F DAM = 865.5 NGVD	
THE DAM IS NOT OVER TOPPED.	
	7-8

PROJECT NON FEDERAL DAM INSPECTION PROJECT NO. 81-20-11 SHEET 9 OF 20
NEW ENGLAND DIVISION COMPUTED BY WANTE 5/14/6/
BRISTOL FISH AND GAME CLUB DAM CHECKED BY & Buttle Bola DATE 5/15/81
BASED UPON CORPS OF ENGINEERS "RULE OF THUMB"
GUIDANCE FOR ESTIMATING DIS DAM FAILURE
HYDROGRAPUS
BREACH OUTFLOW Qb = = 1 XWb x 19 x 40 2
HEIGHT FROM CHANNEL BED TO POOL @ TOP OF DAM 40
= 22.5 F7.
ESTIMATED BREACH WIDTH Wb = 40% OF MID-HT LENGTH
OF DAM = 0.4 x265 = 106 FT
CHIO HEIGHT LENGTH IS BASED UPON SES DESIGN DRAWINGS)
$\therefore Q_b = \frac{9}{27} \times 106 \times \sqrt{32.2} \times (22.5)^2 \subseteq 19,020 \text{ CFS}$
IT IS PRESUMED THAT THE BREACH OCCURS IN DEEPEST
SECTION OF THE DAM. THIS SECTION INCLUDES THE
PRINCIPAL SPILLWAY AS WELL AS THE LOW LEVEL OUTLET.
THE ESTIMATED DISCHARGE, THROUGH EMERGENCY
SPILLWAY WITH POOL AT TOP OF THE DAM = 521 CFS
: PEAK FAILURE OUTFLOW Qp = 19.020+521 = 19.600
FSTIMATED FAILURE FLOOD DEPTH = 0.4440
IMMEDIATELY DIS FROM DAM = 10 FT
the state of the s

PROJECT NON FEDERAL DAM INSPECTION			1.1	
NEW ENGLAND DIVISION				
BRISTOL FISH AND GAME CLUB DAM	CHECKED	BY E BUTEL	u Bolon r	DATE 5/15/81
	į	1	1 1	
PERFORM DIS ROUTING	OF PEAK	K FAILUR	E OUTE	LOW
SECTION AA IS SELECT				
2/2 V	Whore	n = 0.06	assumed	(stones.
$Q = \frac{1.486}{m} + A + R + 13$	and	A= 0:043	Ect.	p Windy)
= 5.136 AR ^{2/3}			USGS	map.
A AND R ARE ESTIMATA	ED BASE	<u> </u>	i	
ELVN AsgiFt	ρ	R	1R2/3	Q-CFS
	,			
900 0	<u>.</u>		· · · · · · · · · · · · · · · · · · ·	6
9.02 38	38.2	0.995	0.997	195
905 237.5			1.938	
808 614	154.3		: !	7925
910 950	and the second second			14,218
811 1151	•		•	18,208
812 1372	233	5.9	3.3	
				•
FROM STAGE - AREA AND	STAGE	DISCH AL	RGE CU	RVES
FOR QP. = 19,600 CFS,	ELVN	= 811.2	SAREA	= 120659 FT
FOR QP, = 19,600 CFS, VOLUME OF REACH VI = 1000×	$\frac{1206}{560} = 2$	8 Ac. FT.		
TRIAL QP2 = Q	P1 (1-4)	اروا = (ا	600 (1- Es	1-15 350
FOR THIS QL THE STAGE-				
				810.25
AND AREA =	998 59	1. FT.		3 - 1 1
	1000 × 9	18		
VOLUME OF REACH V2 =	43, 56	`^ <u>=</u>	23 Ac	FT.
RECOMPUTING QP2:10	7.600 (1	- 28 123) = 15	,725 CFS
		129		
PEAK OUTFLOW QP2 = 1	15,725 6			
FLOOD STAGE AT SECT	TION AA	= 810	4 NOVD	
FLOOD DEPTH AT SEC				
VELOCITY AT SECTION				15 FPS
			2-8	
		لحال حال حال	سميد المساور والواسمون أدرا ويورون	D-10

PROJECT NON FEDERAL DAM INSPEC	CTION PRO	DJECT NO. 81-	20-11 SHEET	13 of 20
NEW ENGLAND DIVISION		TED BY Jan		
BRISTOL FISH AND GAME CLUB DA		DBY E. But		
SELECTING A SECTION	BB 900°	D/5 OF	SECTION	AA
Q = 1.486 x A x 1	R2/3 x /5 2			
213		·	8 = 0.07 b	
$= 6.553 AR^{213}$;	:	US	as maf.
			2/3	~
ELVN A		R	R2/3	. Q
730 0				0
734 186	92.85	1.992	1.584	
	140.02	2.989	2.076	•
738 746	185.7	3.985	2.515	
740 1150	230. 9	4.981	2.918	21,770
STAGE AREA AND STAG	6 - 10 - 11 - 10	46 6 046	c 10c 101	ATT CD
VOLUME OF REACH VI TRIAL QP2 = QP, (1-\frac{V_1}{5}) FOR 13.470 CFS, ELVN) = 15.7	125 (1-1	$\frac{3.5}{29} = 13$	470 CFS
VOLUME OF REACH V2 =				
RECOMPUTING QP2 = 15.		•		575 CFS
PEAK OUTFLOW QP2	= 13/	575 CFS		× 1. ~
FLOOD STAGE AT S				
FLOOD DEPTH AT				1
VELOCITY AT SECTION	3N 3B	= 13,	575 S J	6.5 F PS
				D-13

750			
745			
740			
700			
			E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
735			
		BRISTOL CLUB DAM	7 3 6
		STAGE-AREA CURVE SECTION BB	
			\$ th
730	V · · · ·		115/1
730 7 Homi	100 0 100 20NTAL DISTANCE IN FEET LOOKING DOWNSTREAM		- 20
#	LOOKING DOWNSTREAM		
			and the second second

					T	T. E. S. S.									
										1		-			
												,. ,			

											<u>, - , </u>				· · · · · · · · · · · · · · · · · · ·
140 140 141															
738									1	:				00	D.
2 136 9													28 DEM	Budd) T
739 5	1										472	21 <u>C - I</u>	CH PAGE COI	ZVE F,	200
732														7	5))9
730	5	4000		8000	12	,000	16,	,000	20,1	000				1)18/81	00
<u>Y</u>			214	CHARG	E. 19	· c.F.	\$		•	-					
\mathcal{O}				SECTIO	m B	. B			•				***		

· . . .

PROJECT NON FEDERAL DAM INSPECTION PROJECT NO 81-20-11 SHEET 16 OF 20
BRISTOL FISH AND GAME CLUB DAM CHECKED BY & BUTELLY TO DATE 5/15/18
SELECT A SECTION CC 3700 DIS OF SECTION B.B
A CONSIDERABLE REACH LENGTH (3300'1) BELOW SECTION BB 15 EXTREMELY STEEP AND NARROW. THEREFORE,
ATTENUATION OF STORAGE VOLUME IS CONSIDERED NEGLIGIBLE: THE REACH LENGTH USED IN THIS ANALYSI
15 THEREFORE 400'.
Q = 1.486 XAXR 2/3 Where n= 0.05 assumed = 6.443 A R2/3
FLUN A SOFT P R R213 OLIFS
230 0 — — — — — — — — — — — — — — — — — —
235 1312 525 2.5 1.84 15.555
STAGE AREA AND STAGE DISCHARGE CURVES ARE PLOTTED
FOR QP, = 13.575 CFS - ELVN = 234.75 & AREA = 1188 SQ. F. VOLUME OF REACH VI = 400 x 1188 = 11 Ac. FT. 43.560
TRIAL QP2 = QP, (1- 1) = 13, 575 (1- 129) = 12,400 CF
FOR 12,400 CFS, 64VI = 234.6 & AREA = 1104 SQ FT 1. VOLUME OF REACH V2 = 400 × 1104 = 10 AC.FT 413,560
RECOMPUTING QP2: 13,575 (1-11+10) = 12,400 CFS
PEAK OUTFLOW QP2 = 12,400 CFS
FLOOD STAGE AT SECTION CC = 234.6 NGVD FLOOD DEPTH AT SECTION CC = 234.6-230 = 4.6 FT.
VELOCITY AT SECTION CC = 12,400 = 11 FPS

CONSULTING ENGINEERS NORTH HAVEN, CONN.

NON ECDEDAL DAM INCRECTION 01 00 11
PROJECT NON FEDERAL DAM INSPECTION PROJECT NO. 81-20-11 SHEET 19 OF 20
NEW ENGLAND DIVISION COMPUTED BY DATE : 11/1/11
BRISTOL FISH AND GAME CLUB DAM CHECKED BY E. Butch Bal DATE 5/16/21
FAILURE HAZARD POTENTIAL
BASED UPON THE EXISTING INFORMATION, THE LOWEST SECTION
OF THE DAM APPEARS TO BE IN THE VICINITY OF THE
PRINCIPAL SPILLWAY WITH LOW LEVEL OUTLET AND HENCE
17 15 PRESUMED THAT BREACH OF THE DAM WOULD
OCCUR IN THIS VICINITY.
THE FAILURE ANALYSIS WAS PERFORMED WITH POOL AT
TOP OF DAM (EL. 865.5 NGVD).
SUMMARY OF BREACH ANALYSIS RESULTS:
LOCATION DISTANCE PEAK FLOW FLOOD FLOOD VELOCITY
FROM DAM, FT. RATE, CFS STAGE, NGVD DEPTH, FT FPS.
DAM 0 19,600 853.0 10.0 -
AA 1000 15,725 810.4 10.4 15
BB 1900 13,575 738.4 8.4 16.5
CC 5600 12,400 234.6 4.6 11
A CONSIDERABLE PORTION OF THE CUSSGUTTER BROOK DOWNSTREAM
OF THE DAM TRAVERSES THROUGH THE BRISTOL FISH AND GAME
CLUB PROPERTY AND HUNTING, FISHING AND HIKING ACTIVITIES
TAKE PLACE IN THIS REACH. AT DAM BREACH CONDITION, THE
FLOOD DEPTHS IN THIS REACH IS ESTIMATED TO BE 10.4 FT
(SECTION AA) AND 8.4 FT (SECTION BB) WITH VERY HIGH VELOCITIES
(15-16.5 FPS).
FURTHER, DOWNSTREAM, THE BRIDGE ON LAKE AVE. WITH AN OPENING
OF 3'XII' 15 LIKELY TO BE IMPACTED WITH HIGH
VELOCITY (11 FFF) FLOW OF 12,400 CFS. IN ADDITION, THERE
ARE 3 HOUSES ADJACENT TO THE BROOK ON LAKE AVE WITH
15T FLOOR ELEVATIONS BETWEEN 7' TO 8.5' WHICH COULD HAVE
SOME CELLAR FLOODING.
SINCE, OVERNIGHT CAMPING ON CLUB PROPERTY IS NOT PERHITTED
Loss of life from DAM FAILURE IS UNLIKELY. HENCE, A HAZARD
POTENTIAL OF LOW MAGNITUDE IS CONSIDERED LIKELY.
D-19

NOT DEPOSIT DAY AND DESCRIPTION OF A CO. 11	
PROJECT NON FEDERAL DAM INSPECTION PROJECT NO. 81-20-11	1
NEW ENGLAND DIVISION COMPUTED BY	1
BRISTOL FISH AND GAME CLUB DAM CHECKED BY & BULLLE TO	STAL DATE STATE
SUMMARY- HYDRAULIC/HYDROLOGIC COMPUTATIONS PERFORMANCE AT PEAK FLOOD CONDITIONS	
	100
TEST FLOOD	100 YR
PEAK INFLOW	120 cfs
PEAK OUTFLOW	58 cFs
PRINC SPILL CAP TO TOP OF DAM (EL.865.5 NGVD)	27 cfs
PRINC. SP. CAP. TO TOP OF DAM % OF PEAK OUTFLOW	47
PRINC. SP. CAP. TO PEAK FLOOD ELVN 862.85 NGVD	8 cfs
PRINC. SP. CAP. TO PEAK FLOOD ELVN % OF PEAK OUTFL	• • • •
EMERGENCY SP. CAP. TO PEAK FLOOD ELVN	50 cfs
EMERGENCY SP. CAP. TO PEAK FLOOD EL % OF PEAK OUTF	LOW 86
	· • • • • • • • • • • • • • • • • • • •
PERFORMANCE:	
MAXIMUM POOL ELVN	862.85 NGVD
MAX. SURCHARGE HEIGHT ABOVE PRINC. SP. CREST	1.85 FT
NON-OVERFLOW SCETION OF THE DAM OVERTOPPED	NO
DOWNSTREAM FAILURE CONDITIONS	
PEAK FAILURE OUTFLOW	19,600 CFS
FLOOD DEPTH IMMEDIATELY D/S FROM DAM	10 FT
CONDITIONS AT THE IMPACT AREA: SECTION CC (LAKE A	
EST, STAGE BEFORE FAILURE	230.4 NGVD
The state of the s	234.6 NGVD
EST. RAISE IN STAGE AFTER FAILURE \(\Delta \)	, .
· · · · · · · · · · · · · · · · · · ·	# · · · · · · · · · · · · · · · · · · ·
	7 3

SANDY HOOK DAM CT 00311

HOUSATONIC RIVER BASIN NEWTOWN, CONNECTICUT

The original hardcopy version of this report contains color photographs and/or drawings. For additional information on this report please email

U.S. Army Corps of Engineers New England District Email: Library@nae02.usace.army.mil

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

UNCLASSIETED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS
I. REPORT NUMBER		BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
1. KEPONI NOMBEN		3. RECIPIENT 3 CATALOG NUMBER
CT 00311	1909144298	
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Sandy Hook Dam		INSPECTION REPORT
NATIONAL PROGRAM FOR INSPECTION OF I	NON-FEDERAL	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(#)		8. CONTRACT OR GRANT NUMBER(+)
U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
DEPT. OF THE ARMY, CORPS OF ENGINEER	RS !	January 1980
NEW ENGLAND DIVISION, NEDED		13. NUMBER OF PAGES
424 TRAPELO ROAD, WALTHAM, MA. 02254	4	25
14. MONITORING AGENCY NAME & ADDRESS(II different	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
	·	184. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	1-00-1-00-1-00-1-00-1-00-1-00-1-00-1-0	<u> </u>

APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report)

18. SUPPLEMENTARY NOTES

Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

DAMS, INSPECTION, DAM SAFETY,

Housatonic River Basin · Newtown, Connecticut

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The Sandy Hook Dam consists of a stone masonry, earth, and concrete structure with a total length of 185 feet and a height from streambed to abutment of 35 feet. The dam appears to be in fair condition and requires some work. It is classified as a low hazard potential. It is classified as small in size.

TABLE OF CONTENTS

DESCRIPTION		1	÷	2
EVALUATION OF HYDRAU	LIC/HYDROLOGIC FEATURES	3	-	4
OVERVIEW PHOTO			5	
LOCATION PLAN	•		6	
APPENDIX A	ENGINEERING DATA			
APPENDIX B	PHDTOGRAPHS			
APPENDIX C	HYDROLDGIC COMPUTATIONS			
APPENDIX D	INVENTORY FORMS			

DESCRIPTION

SANDY HOOK DAM
CT 00311
TOWN OF NEWTOWN, COUNTY OF FAIRFIELD
ON THE POOTATUCK RIVER
OWNED AND OPERATED BY EARTH BOUND, INC.

The Sandy Hook Dam consists of a stone masonry, earth, and concrete structure with a total length of 185 feet and a height from streambed to abutment of 35 feet. The dam was originally constructed in 1870 (from plaque on dam) as a stone masonry structure. The concrete face, walls, deck and intake structure were added at a later date. The downstream face of the right end of the dam had been covered with earth, but the failure of a downstream retaining wall has exposed the original stone masonry.

The overflow spillway section is 80 feet long and is interrupted by a 6-foot wide intake structure. The intake structure contains the gate and manual operator for the blowoff. The blowoff consists of a 30-inch pipe through the concrete portion of the dam and a 48 x 55-inch arch through the stone masonry portion of the dam.

Two sluice gates with manual operators located near the right end of the dam control the intake to a 72-inch diameter riveted steel conduit which transports water to a turbine. All gates are operational.

The dam is owned and operated by Earth Bound, Inc., a health food distributor. The dam was originally used to store water for generating electricity for a manufacturing plant. The present

owner plans to rebuild the generating unit and put it back into service.

The dam appears to be in fair condition and requires some work.

ÉVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES

The Sandy Hook Dam has a tributary watershed of 24.8 square miles, a spillway capacity of 4,800 cfs, and a water surface area at spillway elevation of 2.4 Acres. Assuming an average depth of 10 feet at spillway level (existing average depth is only 2 - 3 feet), the storage capacity would be 24 Acre-Feet at spillway and 43 Acre-Feet at the top of the dam. The spillway crest is 23 feet above streambed with another 8 feet to the top of the dam. According to the Corps of Engineers' guidelines the dam is classified as "Small" in size by both height and storage capacity.

No design data is available.

The dam overtopped in August, 1955, but did not sustain significant damage.

A dam breach analysis was made using the Corps of Engineers'
"Rule of Thumb" guidance for estimating downstream dam failure
hydrographs. Assuming failure occurred with the water level at
the top of the dam, the peak discharge was calculated to be about
18,000 cfs. The dam breach flood was routed through the downstream reaches.

The small volume of the reservoir caused the flood peak to dissipate quickly and to approximate the before breach spillway flow when it reached Rocky Glen Dam some 3,000 feet downstream. There are no inhabitants or important highways in the valley below the dam at this time. Construction is underway for residential housing about 2,000 feet downstream from Rocky Glen Dam. Final subdivision plans are not available but construction will be above

elevation 110, which is the 100 year flood stage for the Housatonic River.

As the flood peak would have dissipated before reaching this area, the dam was classified as "Low Hazard Potential".

OVERVIEW PHOTO

U.S ARMY ENGINEER DIV NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASSACHUSETTS

ROALD HAESTAD, INC. consulting engineers waterbury, connecticut

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS SANDY HOOK DAM
POOTATUCK RIVER
NEWTOWN, CONNECTICUT
CT 00311
12 DEC '79

SANDY HOOK DAM NEWTOWN, CONNECTICUT

SCALE: 1" = 2000'

ROALD HAESTAD, INC.

NEWTOWN QUADRANGLE 1972

APPENDIX A

ENGINEERING DATA

SECTION A-A

Note: Spillway Elevation estimated from USGS Quadrangle.

ROALD HAESTAD, INC. CONSULTING ENGINEERS WATERBURY, CONNECTICUT U.S. ARMY ENGINEER DIV. NEW ENGLAND CORPS OF ENGINEERS
WALTHAM, MASS.

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS

SANDY HOOK DAM

DRAWN	CHECKED	APPROVED	SCALES AS NOTED	
JRS	DLS	1	DATE DEC. 1979	PAGE 8-1

PLAN Scale 1"-40"

ELEVATION
Scale 1"-40"

APPENDIX B

PHOTOGRAPHS

DENOTES PHOTO NUMBER AND DIRECTION IN WHICH PHOTO WAS TAKEN

PHOTO LOCATION PLAN

SANDY HOOK DAM NEWTOWN, CONNECTICUT

SCALE: 1" = 40"

ROALD HAESTAD, INC.

JANUARY 1980

APPENDIX C
HYDROLOGIC COMPUTATIONS

OVERVIEW OF DAM FROM DOWNSTREAM SIDE

PHOTO NO. 2

STONES MISSING IN ARCH ROOF, BLOCK POPPING OUT LEFT OF OUTLET WOODEN MEMBERS SUPPORTING UPSTREAM ROOF

U S ARMY ENGINEER DIV NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASSACHUSETTS

ROALD HAESTAD, INC. CONSULTING ENGINEERS WATERBURY, CONNECTICUT

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS SANDY HOOK DAM

POOTATUCK RIVER

NEWTOWN, CONNECTICU

CT 00311

27 NOV '79

US ARMY ENGINEER DIV NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASSACHUSETTS

ROALD HAESTAD, INC.
CONSULTING ENGINEERS
WATERBURY, CONNECTICUT

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS

SANDY HOOK DAM
POOTATUCK RIVER
NEWTOWN, CONNECTICUT
CT 00311
19 NOV '79

PHOTO NOS. 3 & 4

UPSTREAM FACE AND INTAKE

PHOTO NO. 5

TREE GROWING FROM STONE
MASONRY ON LEFT SIDE OF DAM

PHOTO NO. 6

DETERIORATED CONCRETE ON SPILLWAY SLAB

U S ARMY ENGINEER DIV NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASSACHUSETTS

ROALD HAESTAD, INC. CONSULTING ENGINEERS WATERBURY, CONNECTICUT

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS SANDY HOOK DAM
POOTATUCK RIVER

NEWTOWN, CONNECTICUT

CT 00311

27 NOV '79

BY .. PAS .. DATE ./2/2/79.

ROALD HAESTAD, INC.

CONSULTING ENGINEERS

37 Brookside Road - Waterbury, Conn. 06708

JOB NO 049-06

CKD BY .SA. DATE . 12/31/.79.

SHEET NO. J. OF ...

SUBJECT SANDY HOOK DAM - SPILLWAY CAPACITY

MAIN SPILLWAY .	<u>E/eu</u> , 210	Length 32'	Coeff.
AUXILLIARY SPILLWAY	211	42'	2.7
OVER BANK	2/8	160'	2.7

DEPTH	MAIN SPILLWAY	AUXILLIARY SPILLWAY	OVER BANK	TOTAL
1	118		O	118
2	335	113	0	448
3	615	321	o	936
4	947	589	0	1536
5	1324	907	0	223/
6	1740	1268	6	3008
7	2193	1667		3860
8	2679	2100	•	4779
	3197	2565	432	6194
10	3744	.3062	1222	8028
	4320	3586	2245	10,151
12	4922	4137	3456	12,515

BY ... DAS. DATE /2-2-75. ROALD HAESTAD, INC. SHEET NO. 2. OF 5.

CONSULTING ENGINEERS

CKD BY .SA DATE 1.2/31/79

37 Brookside Road - Waterbury, Conn. 06708 JOB NO. 049-06.

SUBJECT SANDY HOOK DAM - SPILLWAY CAPACITY

BY .DLS DATE .12.131/79	CONSULTING ENGINEERS	SHEET NO 3 OF 5
SUBJECTSANDY	HOOK DAM	••••••
the state of the s		
WATERSHED	- 24.8 Sq. mi.	
WATERSURFA	CE AREA - 2,4 ACRES	
STORAGE CAN	PACITY - ASSUME AVE. DEP	TH = 10'
STORAGE A	T SPILLWAY CREST = 24 AC	RE FEET
STORAGE A	T TOP OF DAM = 18x24 =	43 Ac, Ft.
	WE PEAK DISCHARGE	
ALIPMA CONTROL - STEPP III	breach width = 40% of	width at mid height
	-0.4 (132') = 52.8'	
y _o =	Hydraulic Height of Dam, to Abutment	Stream bed
Уо =	: 3 <i>5</i> ′	and the second of the second o
ලු ළ, = දි	$\sqrt{27}$ (52.8) $\sqrt{32.2}$ (35) =	18,400 CAS
SECTION 1 (SEE FIGURE 4) HI = 20'	RFACH LI	ENGTH = 800'
V ₁ = 100	00 × 600 / 43560 = 185 Ac-FT.	
Qpz= 7	$8,400\left(1-\frac{18.5}{43}\right)=10,500$ CAS	
	= 13.5' A TRIAL = 660 0	
Vz TRIAL	= 660 x 800/43560 = 12 Ac:	
VAVE =	= 15 Ac, Ft.	
Qp2 =	$18,400\left(1-\frac{15}{43}\right)=12,0$	00 CSS
		and the same of th

ं

BY	ROALD HAESTAD, INC. CONSULTING ENGINEERS 37 Brookside Road - Waterbury, Conn. 06708	JOB NO. 049-06
	DAM - FLOOD ROUTING	
SECTION Z	REACH LENGTH = 800'	
Gp2 = 12	2,000 Cfs	
	Az = 750 #	
	0 × 800 / 43560 = 14 Ac-1	
	$= 12,000 \left(1 - \frac{13}{43}\right) = 800$	
	L = 11' A 3 TRIAL = 550	
	AL = 800 ×550 /43560 = 16	
	14+10 = 12 ALFT.	
	$12,000\left(1-\frac{12}{43}\right)=8650$	CfS
SECTION 3 (ROCKY	GLEN DAM)	
Qp3=8	2650 C & S	
THE WORLD A SHEET CHIEF	4' A, = 990 ^m	
V ₃ = 3.8	Acres x 7.4 H. = 28 Az-F1 B. Ac. F1, is Greater than	1/2 S, Try Smaller H
and the following and the first and the firs	5' . Qr = 4500 cfs (From	The second section of the second
		\$
V ₃ = :	5. x 3.8 Acres = 19 . Ac-	F7.
	= 8650 (1- 12) = 4900 C	
SANDY HOUK SPILLWAY	Y CAPACITY AT FAILURE	= 4800 (+3

Š

BY....\$4...DATE 12/6/79...

ROALD HAESTAD, INC. SHEET NO. 5 OF 5

CONSULTING ENGINEERS

37 Brookside Road - Waterbury, Conn. 06708

JOB NO. 049-06

CKD BY PAS. DATE . 12/30/29 ..

or or other transfer of the contract of the co

SUBJECT SANDY HOOK DAM - FLOOD ROUTING

SECTIONS 1 & Z (SEE FIGURE 4)

50′

ASSUME VERTICAL SIDED GORGE 50' WIDE ON THE BOTTOM

\mathcal{D}	Wp	<u>A</u>	<u>R</u>	<u>s</u>		<u> </u>
5	60	250	4.17	0,010	9.6	2400
10	70	500	7.14	0.010	13.8	6900
15	80	750	9.38	0.010	16.5	12,375
20	90	1000	11.11	0.010	18,5	18,500
25	100	1250	12.50	0.010	20.0	25,000
30	110	1500	13.64	0.010	21.2	31.800

DISCHARGE CAPACITY - (1000Cfs)

AREA - Sq. Ft.

APPENDIX D

INVENTORY FORMS

CONNECTICUT RIVER BASIN SUFFIELD, CONNECTICUT

SCHWARTZ POND DAM CT 00280

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

The original hardcopy version of this report contains color photographs and/or drawings. For additional information on this report please email

U.S. Army Corps of Engineers New England District Email: Library@nae02.usace.army.mil

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

APRIL 1981

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTA	TION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
I. REPORT NUMBER	2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
CT 00280	ANA 144407	
. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Schwartz Pond Dam		INSPECTION REPORT
NATIONAL PROGRAM FOR INSPECTION	N OF NON-FEDERAL	6. PERFORMING ORG, REPORT NUMBER
AUTHOR(4)	· · · · · · · · · · · · · · · · · · ·	8. CONTRACT OR GRANT NUMBER(*)
U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION		
PERFORMING ORGANIZATION NAME AND AD	DORESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
I. CONTROLLING OFFICE NAME AND ADDRES	-	12. REPORT DATE
DEPT. OF THE ARMY, CORPS OF ENG	GINEERS	April 1981
NEW ENGLAND DIVISION, NEDED	00054	13. NUMBER OF PAGES
424 TRAPELO ROAD, WALTHAM, MA.		. 55
MONITORING AGENCY NAME & ADDRESS(II	ditterent from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		184. DECLASSIFICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abetract entered in Black 20, If different from Report)

18. SUPPLEMENTARY NOTES

Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

DAMS, INSPECTION, DAM SAFETY,

Connecticut River Basin Suffield, Connecticut

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The Schwartz Pond Dam is a masonry and concrete structure approximately 128 ft. long, with a top width of 2 ft. and a maximum height of 16 ft. Based on visual inspection, the Schwartz Pond Dam is judged to be in fair condition. As per the Corps of Engineers' Recommended Guidelines for Safety Inspection of Dams, the Schwartz Pond Dam is classified as 'small' in size with 'low' hazard potential. A test flood equal to 100-year frequency event was selected in accordance with the Corps of Engineers.

SCHWARTZ POND DAM CT 00280

CONNECTICUT RIVER BASIN SUFFIELD, CONNECTICUT

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

A DAM INSPECTION PROGRAM LEGISLE I INSPECTION REPORT

IDENTIFICATION AND	CT-00280
NAME OF DAM:	Schwartz Pond Dam
TOWN:	Suffield
COUNTY AND STATE:	Hartford County, Connecticut
STREAM: Stony	Brook, a tributary of Connecticut River
DATE OF INSPECTION:	December 17, 1980

BRIEF ASSESSMENT

The Schwartz Pond Dam is a masonry and concrete structure approximately 128 ft. long, with a top width of 2 ft. and a maximum height of 16 ft.

There is a 3'x4' regulating outlet controlled by a sluice gate which is currently inoperable. The spillway, an overflow portion of the dam, is 86 ft. long with its crest 5.2 ft. below the top of the dam.

Based on visual inspection, the Schwartz Pond Dam is judged to be in fair condition. A feature found existing that could affect the stability of the dam is the deteriorating concrete at the wingwalls, regulating outlet and west dam embankment.

It is recommended that the owner arrange for a qualified registered engineer to do the following within one year of receipt of this report:

Inspect and evaluate the condition of poncrete and masonry within the dam and appurtenant structures, and the contact zone between them and the ledge rock foundation. The pond should be lowered in order to enable a thorough inspection;

Determine the origin and significance of seepage under the sandstone wall at the east side of the dam.

It is recommended that the owner repair the wooden sluice gate and the winch mechanism of the regulating outlet within one year of receipt of this report. Other remedial measures contained in Section 7 should also be carried out within a period of one year.

As per the Corps of Engineers' Recommended Guidelines for Safety Inspection of Dams, the Schwartz Pond Dam is classified as 'small' in size with 'low' hazard potential. A test flood equal to 100-year frequency event was selected in accordance with the Corps of Engineers' Guidelines. The calculated test flood inflow of 9,500 cfs results in a routed outflow of 9,400 cfs. The spillway capacity is 3,300 cfs with water level at the top of the dam. The spillway is capable of passing 35% of the routed test flood outflow. The storage capacity of the pond up to the top of the dam is 150 ac. ft. and up to the test flood level is 190 ac. ft.

An operation and maintenance manual to take care of normal routine procedures should be prepared.

GOODKIND & O'DEA INC.
AND
SINGHAL ASSOCIATES
(J.V.)

RAMESH SINGHAL, Ph.D., P.E. (Singhal Associates)

LAWRENCE J. BUCKLEY, P.E. (Goodkind & O'Dea Inc.)

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation: however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there by any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

The Phase I Investigation does <u>not</u> include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the pulic. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.

TABLE OF CONTENTS

SECTION	PAGE NO
LETTER OF TRANSMITTAL	
BRIEF ASSESSMENT	
REVIEW BOARD PAGE	
PREFACE	i
TABLE OF CONTENTS	iii
OVERVIEW PHOTO	Sheet 1
LOCATION PLAN	Sheet 2
REPORT	
1. PROJECT INFORMATION	
1.1 General a. Authority b. Purpose of Inspection	1-1
1.2 Description of Project a. Location b. Description of Dam & Appurtenances c. Size Classification d. Hazard Classification e. Ownership f. Operator g. Purpose of Dam h. Design & Construction History i. Normal Operational Procedure	1-2
1.3 Pertinent Data a. Drainage Area b. Discharge at Damsite c. Elevation d. Reservoir Length e. Storage f. Reservoir Surface g. Dam h. Diversion & Regulating Tunnel i. Spillway j. Regulating Outlets	1-4

SEC	CTION	PAGE NO.	
2.	ENG	INEERING DATA	
	2.1	Design Data	2-1
	2.2	Construction Data	2-1
	2.3	Operation Data	2-1
	2.4	Evaluation of Data a. Availability b. Adequacy c. Validity	2-1
3.	VIS	JAL INSPECTION	
	3.1	Findings a. General b. Dam c. Appurtenant Structures d. Reservoir Area e. Downstream Channel	3-1
		or somstand change	.:
	3.2	Evaluation	3-4
4.	OPER	RATIONAL & MAINTENANCE PROCEDURES	
	4.1	Operational Procedures a. General b. Description of any Warning System in Effect	4-1
	4.2	Maintenance Procedures a. General b. Operating Facilities	4-1
	4.3	Evaluation	4-1
5.	EVAL	UATION OF HYDRAULIC/HYDROLOGIC FEATURES	
	5.1	General	5-1
•	5.2	Design Data	5-1
	5.3	Experience Data	5-1
	5.4	Test Flood Analysis	5-1
	5.5	Dam Failure Analysis	5-2

6. EVALUATION OF STRUCTURAL STABILITY 6.1 Visual Observation 6.2 Design & Construction Data 6.3 Post-Construction Changes 6.4 Seismic Stability 7. ASSESSMENT, RECOMMENDATIONS & REMEDIAL MEASURES 7.1 Project Assessment a. Condition b. Adequacy of Information c. Urgency 7.2 Recommendation 7.3 Remedial Measures a. Operation & Maintenance Procedures	PAGI
6.2 Design & Construction Data 6.3 Post-Construction Changes 6.4 Seismic Stability 7. ASSESSMENT, RECOMMENDATIONS & REMEDIAL MEASURES 7.1 Project Assessment a. Condition b. Adequacy of Information c. Urgency 7.2 Recommendation 7.3 Remedial Measures	
6.3 Post-Construction Changes 6.4 Seismic Stability 7. ASSESSMENT, RECOMMENDATIONS & REMEDIAL MEASURES 7.1 Project Assessment a. Condition b. Adequacy of Information c. Urgency 7.2 Recommendation 7.3 Remedial Measures	6-
6.4 Seismic Stability 7. ASSESSMENT, RECOMMENDATIONS & REMEDIAL MEASURES 7.1 Project Assessment a. Condition b. Adequacy of Information c. Urgency 7.2 Recommendation 7.3 Remedial Measures	6-
7. ASSESSMENT, RECOMMENDATIONS & REMEDIAL MEASURES 7.1 Project Assessment a. Condition b. Adequacy of Information c. Urgency 7.2 Recommendation 7.3 Remedial Measures	6-
7.1 Project Assessment a. Condition b. Adequacy of Information c. Urgency 7.2 Recommendation 7.3 Remedial Measures	6-
a. Condition b. Adequacy of Information c. Urgency 7.2 Recommendation 7.3 Remedial Measures	
7.3 Remedial Measures	7-
	7-
	7-
7.4 Alternatives	7-

•

APPENDICES

APPENDIX	A:	INSPECTION CHECKLISTS	A-1 to A-4
APPENDIX		ENGINEERING DATA Engineering Data Checklist Survey Information Bibliography	B-1 B-2 to B-7 B-8
APPENDIX	C:	DETAIL' PHOTOGRAPHS Photo Location Plan Photographs	Sheet C-1 C-1 to C-4
APPENDIX	D:	HYDROLOGIC AND HYDRAULIC COMPUTATIONS Computations	D-1 to D-16
APPENDIX	E:	INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS	

GOODKIND 8. 0°DEA INC.— U.S. ARMY ENGINEER DIV. NEW ENGLAND SINGHAL ASSOCIATES(JV) CORPS OF ENGINEERS ENGINEERS WALTHAM, MASS.

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS

OVERVIEW PHOTO OF DAM

SCHWARTZ POND DAM SUFFIELD, CONNECTICUT

CHECKED BY APPROVED BY SCALE: NONE DRAWN BY E.T.K.

NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT

PROJECT INFORMATION Section 1

1.1 GENERAL

a. Authority

Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Goodkind & O'Dea Inc., Hamden, Conn. and Singhal Associates, Orange, Connecticut (Joint Venture) have been retained by the New England Division to inspect and report on selected dams in the State of Connecticut. Authorization and notice to proceed were issued to Goodkind & O'Dea Inc. and Singhal Associates (J.V.) under a letter of December 9, 1980 from Colonel William E. Hodgson, Jr., Corps of Engineers. Contract No. DACW 33-81-C-0022 dated December 9, 1980 has been assigned by the Corps of Engineers for this work.

b. Purpose of Inspection

The purposes of the program are to:

1. Perform technical inspection and evaluation of nonfederal dams to identify conditions requiring The east concrete dam embankment and the 45 ft. concrete retaining wall were generally in good condition, with no evidence of any cracking or spalling. Extending from the east dam embankment, the concrete wingwall was in poor condition as shown in Photo 4. The lower north corner of the wingwall is broken and the concrete is moderately spalled with additional deterioration at the junction of the outlet works and wingwall.

Seepage was observed under the sandstone wall, east of the spillway, as noted on the general dam plan in Appendix B. The seepage flowed steadily, but was small and appeared to be free of any soil particles. A 12 ft. portion of this sandstone wall, which is abutting the stone slope, was also observed to be tilting forward (See general dam plan in Appendix B).

As shown in Photo 5, the concrete wingwall west of the spillway was in fair condition with no visible cracks. The bottom portion of the wingwall appeared to have been recently repaired with no apparent voids underneath; however, the north end of the wingwall did show signs of continuing deterioration (See Photo 7). At the junction of this wingwall and the west concrete dam embankment, moderate deterioration was observed as shown in Photo 6. Some efflorescence was also noted at the construction joints of the west dam embankment as shown on the general dam plan in Appendix B. The area

immediately downstream of this embankment was void of fill and at much lower elevation than the bottom of the pond (See Photo 7).

It appears that the entire dam, including the spillway, is founded on rock base. The contact zone between the rock and the bottom of the concrete structures and the structures themselves could not be inspected due to the full pool with the water flowing over the spillway.

Spillway

The concrete spillway was generally in good condition as shown in Photos 2 and 3. Exposed coarse aggregate along the spillway and two minor cracks on the crest were observed as noted on the general dam plan in Appendix B. Any seepage that may flow through or under the spillway could not be inspected due to the water flowing over the spillway.

Schwartz Pond, which serves as the upstream channel to the spillway, was in good condition with no accumulation of debris. A small island with a few overhanging trees was the only spillway obstruction noted (See Photo 2).

The channel immediately downstream of the spillway was also in good condition. The floor of the downstream channel was rocky and clean, with a few overhanging trees.

Regulating Outlet

The only regulating outlet for the dam is a 3' x 4' sluice through the east end of the dam with an invert approximately 7' below the spillway crest and 3' above the discharge

channel. A wooden sluice gate is located at the entrance of the outlet and controlled by an iron winch, which is situated on top of the eastern dam embankment (See Photo 3).

The 3' x 4' outlet was in poor condition with moderate deterioration of the concrete around the outlet opening. A scour pocket, approximately 2' deep was noted immediately beyond the outlet in the rock ledge. In the closed position and leaking an appreciable amount of water, the wooden sluice gate is not connected to the iron winch and, therefore, inoperative.

d. Reservoir Area (Schwartz Pond)

The reservoir is located in a partially developed, wooded area with numerous trees overhanging the shore. The few residential homes in close proximity to the pond are situated on high ground.

e. Downstream Channel (Stony Brook)

The channel downstream of the dam is a natural rocky bottom brook with several ledge outcrops along the downstream route. The general condition of the channel is very good with no accumulation of debris. Located approximately 120' downstream of the dam is a masonry and concrete bridge with a 24" cast iron sewer pipe hanging from the structure (See Photo 8).

3.2 Evaluation

The general condition of Schwartz Pond Dam is fair, as assessed by the visual inspection. The following features could influence the future condition and/or stability of the dam:

- 1. Additional deterioration of the concrete wingwall east of the spillway may greatly increase the possibility of failure of the east concrete dam embankment.
- 2. Further deterioration of the concrete regulating outlet and the wooden sluice gate could result in increased leakage which may promote further deterioration of the east wingwall.
- 3. Additional deterioration of the west concrete dam embankment at the junction of the west wingwall will increase the possibility of the failure of these structures.
- 4. The inoperative condition of the wooden sluice gate at the regulating outlet prevents the lowering of the pool which is required to properly inspect the dam embankment and spillway.

OPERATIONAL AND MAINTENANCE PROCEDURES Section 4

4.1 Operational Procedures

a. General

At this time, there are no operational procedures, such as dam surveillance or reservoir level readings. The concrete spillway was designed to be uncontrolled and, therefore, would not require any operational procedures.

The regulating outlet located on the east side of the dam is presently inoperative. When the outlet mechanism was working, the wooden sluice gate normally would have remained closed. The sluice gate was last opened during the Spring of 1980 when the 24" sewer pipe was built under Stoney Brook upstream of the dam.

b. <u>Description of any Warning Systems in Effect</u>
There are no warning systems in effect.

4.2 Maintenance Procedures

a. General

Schwartz Pond Dam is maintained by Mitchell Bryll, the owner. The maintenance procedures, which are very informal, primarily consist of the routine removel of logs and debris from the upstream and downstream channels of the spillway.

b. Operating Facilities

At this time, there are no maintenance procedures for the regulating outlet which is presently inoperative.

4.3 Evaluation

The operational and maintenance procedures of Schwartz Pond Dam are poor. The present condition of the dam substantiates the need for formal operational and maintenance procedures with continuing records, which should be developed by the owner. A list of recommended procedures for the operation and maintenance of the dam is given in Section 7.

EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES Section 5

5.1 GENERAL

The pond has a contributory watershed area of 41 square miles which is practically flat with average slope under 1%. A good part of this area is built up and inhabited, with several town and State roads passing through it.

The Schwartz Pond Dam is a masonry and concrete structure with a maximum height of 16 ft. It has an inoperable 3'x4' low level outlet with an invert approximately 7 ft. below the spillway crest. An 86 ft. length of the dam with crest elevation 96.1 acts as overflow spillway section. Crest elevation of rest of dam is 101.3 which is 5.2' higher than the crest elevation of the spillway. The spillway capacity is 3,300 cfs before overtopping of the dam occurs. The spillway capacity at the routed test flood elevation of 103.6 is 9,400 at which stage the dam is overtopped by 2.3 ft.

5.2 DESIGN DATA

No records are available concerning design data.

5.3 EXPERIENCE DATA

There are no records of pond levels or extent of any overtoppings of the dam.

5.4 TEST FLOOD ANALYSIS

Based on dam failure analysis and impact from test flood, the Schwartz Pond Dam is classified as 'Low' hazard potential

in accordance with Table 2 on page D-9 of the Corps of Engineers'

Recommended Guidelines for Safety Inspection of Dams. The dam

being 'small' in size and with 'low' hazard potential, the

test flood was taken to be equal to the 100-year frequency flood.

The 100-year frequency flood for 41 square miles contributory drainage area, came out as 9,500 cfs using the Connecticut Flood Flow Formula:

Q mean = 0.85 AS =0.85 x 41 x 53 = 1,850 cfs

and Q 100 = 5 x Q mean = 5 x 1850 = 9,300 cfs (say 9,500 cfs)

The routed flow worked out as 9,400 cfs. The spillway

capacity up to the top of the dam is 3,300 cfs which is only

35% of the routed test flood.

5.5 DAM FAILURE ANALYSIS

A dam failure analysis was made using the guidelines provided by the Corps of Engineers. Failure of the dam was assumed with water level at the top of the dam elevation 101.3. A 50 ft. wide and 16 ft. high breach resulted in a peak release rate of 5,400 cfs which is less than the routed test flood of 9,400 cfs. The dam failure will therefore produce less hazardous conditions than the test flood flow if the dam does not fail.

The height of the flood wave came out approximately 9 ft. at the first cross-section (Station 5+0). Two additional cross-sections at 2,700 ft. and 5,000 ft. downstream from the dam were also analyzed Computations are included in Appendix D. There

correction in a timely manner by non-federal inherace.

- 2. Encourage and prepare the States to quickly initiate effective dam inspection programs for non-federal dams.
- 3. To update, verify and complete the National Inventory of dams.

1.2 DESCRIPTION OF PROJECT

The Schwartz Pond Dam is located on Stony Brook, which flows into the Connecticut River approximately 1½ miles downstream from the dam. The location is approximately 1½ miles south from Suffield Town Hall and 1 mile southeast of the intersection of Route 75 and Suffield Street. The geographic location of the site may be found on the Windsor Locks Quadrangle Map, with coordinates of latitude N 41° 57.8' and longitude W 72° 38.3'.

The Schwartz Pond is impounded by a masonry and concrete dam approximately 128 ft. long out of which an 86 ft. length is the spillway section. The dam embankment extends 15 ft. east and 26 ft. west of the spillway. In addition, there are two concrete wingwalls and a 45 ft. concrete retaining wall as shown on the general dam plan in Appendix B. The top width of the dam is 2 ft. and height approximately 16 ft. The crest elevation of the spillway and the dam are 96.1 and 101.3 respectively, the freeboard being approximately 5.2 ft. The only regulating outlet for the dam is a 3'x4' opening through the east end of the dam with its invert approximately 7 ft. below the spillway crest and 3 ft. above the discharge channel. A wooden sluice

an iron winch which is located on the eastern dam embankment (see photo 3).

The dam is classified as 'Small' as the height is 16 ft. and storage up to the top of the lam is only 150 ac. ft.

Hazard classification is 'low' Dam failure analysis shows a peak release rate of only 5,400 cfs as against the test flood flow of 9,500 cfs which too does not cause any downstream hazard due to the high and steeply sloping banks of the Stony Brook.

The Schwartz Pond Dam is owned by:

Mitchell and Asunda Bryll 537 Boston Neck Road Suffield, Conn. 06078 Telephone: (203) 668-2465

E.

24...

Ex

The purpose of the dam is recreational. There are no known records of any construction or post-construction changes. Unconfirmed reports say that originally the dam and spillway consisted of stone masonry and were utilized by mills located on each bank. In the 1920's, the masonry structure was supposedly overlaid with concrete. There was some damage to the structures during 1955 flood after which some repairs were done.

Currently there are no operational procedures like dam surveillance or recording of reservoir levels. The concrete

spillway needs no operational procedures. The 3'x4' regulating outlet located on the east side of the dam is inoperable.

1.3 PERTINENT DATA

a. Drainage Area

The drainage area consists of 41 square miles of flat terrain with an average slope under 1%. Elevations in the basin range from about 100 to 600 ft. MSL. A good part of the area is built up and inhabited with several town and State roads passing through it.

b. Discharge at Damsite

There is only one spillway facility 86 ft. wide located in the middle of the dam, with a crest elevation of 96.1.

	1.	Outlet works	N/A	
	2.	Maximum known flood at damsite	Unknown	
	3.	Ungated spillway capacity at top of a		3,300 cfs 101.3
	4.	Ungated spillway capacity at test flo		9,400 103.6
	5.	Total project discharge at top of dam Elevation		3,300 cfs 101.3
	6.	Total project discharge at test flood Elevation		9,400 cfs 103.6
c.		Elevation - (NGVD)		
	1.	Stream bed at toe of dam:		85.3
	2.	Bottom of cutoff:		N/A
	3.	Maximum tailwater:		N/A

	4.	Normal pool:	96.2
	5.	Full flood control pool:	96:1
	6.	Spillway crest:	96.1
	7.	Design surcharge:	N/A
	8.	Top of dam:	101.3
	9.	Test flood surcharge:	103.6
đ.		Reservoir - Length in Feet	
	1.	Normal pool:	2,000 ft.
	2.	Flood control pool:	2,000 ft.
	3.	Spillway crest pool:	2,000 ft.
	4.	Top of dam:	3,000 ft.
	5.	Test flood pool:	3,200 ft.
e.		Storage - Acre Feet	
	1.	Normal pool:	75 ac. ft.
	Ż.	Flood control pool:	75 ac. ft.
	3.	Spillway crest pool:	75 ac. ft.
	4.	Top of dam:	150 ac. ft.
	5.	Test flood pool:	190 ac. ft.
f,		Reservoir Surface - Acres	
•	1.	Normal pool:	11.5 acres
	2.	Flood control pool:	11.5 acres
	3.	Spillway crest pool:	11.5 acres
	4.	Top of dam:	19.0 acres
	5.	Test flood pool:	21.5 acres

g.	Dam	
1.	Type:	masonry and concrete
2.	Length:	128 ft.
3.	Height:	16 ft.
4.	Top width:	2 ft.
5.	Side slopes:	Upstream -assumed vertical Downstream - varies from vertical to 1 horizontal to 3 vertical
6.	Zoning:	N/A
7.	Impervious core:	N/A
8.	Cutoffs:	N/A
9.	Grout curtain:	N/A
10.	Other:	-
h.	Diversion and Regulating Tunnel:	N/A
i.	Spillway	
	1. Type:	masonry and concrete overflow section.
	2. Length of crest:	86.3 ft.
	<pre>3. Crest elevation</pre>	N/A 96.1
	4. Gates:	N/A
	5. Upstream channel:	N/A
	6. Downstream channel:	Stony Brook (natural channel)
	7. General	-

j. Regulating Outlets:

- 1. Invert:
- 2. Size:
- 3. Description:
- 4. Control Mechanism:

89.0

3 ft. x 4 ft.

Concrete sluice outlet

Wooden sluice gate located on upstream side of outlet, controlled by iron winch situated on top of east dam embankment. Sluice gate is currently inoperable.

ENGINEERING DATA Section 2

2.1 Design Data

There is no available design data.

2.2 Construction Data

There is no available construction data.

2.3 Operational Data

There is no available operational data.

2.4 Evaluation of Data

a. Availability

There is no available engineering data.

b. Adequacy

The engineering data available is inadequate to be of any assistance in the evaluation of the performance of the dam.

c. Validity

Due to the absence of any engineering data, the validity of the data cannot be assessed.

VISUAL INSPECTION Section 3

3.1 Findings

Т

T

T

-

a. General

The formal field inspection took place December 17, 1980 by engineers from Goodkind & O'Dea, Inc., and Singhal Associates. Detailed checklists, which are included in Appendix A, were utilized for the inspection of the dam and spillway. Photographs showing the dam features and problem areas were also taken during the inspection and are given in Appendix C along with the photo location plan.

Based upon the visual inspection, the general condition of the project was 'fair' with some areas requiring repair work and/or monitoring. At the time of the inspection the pool level of Schwartz Pond was approximately 96.2 ft. (NGVD) which was one-tenth of a foot above the spillway crest elevation.

b. Dam

schwartz Pond Dam is a masonry and concrete structure approximately 128' long consisting of a 86.3' spillway, with the dam embankment extending 15' east and 26' west of the spillway. In addition, there are two concrete wingwalls, and a 45' concrete retaining wall as shown on the general dam plan in Appendix B. The horizontal and vertical alignments of these dam features appeared good with no signs of movement or settlement as shown in Photos, 1, 2 and 3.

is no flood hazard under test flood conditions except partial flooding of one house. The dam breach flood flow being smaller than test flood will not cause additional flooding.

EVALUATION OF STRUCTURAL STABILITY Section 6

6.1 <u>Visual Observations</u>

The visual inspection revealed no immediate structural stability problems at this time; however, two areas of major concern were noted.

The additional deterioration of the east wingwall would greatly diminish the structural stability of the east concrete dam embankment. Increased deterioration of this wingwall would lead to the erosion of the earth embankment on the downstream side of the dam. The deterioration of this wingwall is being accelerated by the leaky wooden sluice gate at the regulating outlet. The continuous action of the flowing water is gradually eroding the concrete from the east wingwall and outlet structure.

One area of minor concern noted was the void space downstream of the west concrete dam embankment. There is additional strain on this concrete structure due to the higher upstream pond bottom elevation.

It appears that the entire dam embankment, including the spillway, is founded on rock base. The condition of these structures at the contact zone with the rock and the structures themselves could not be inspected due to the pool level and water flow over the spillway; therefore, a visual assessment of the condition could not be made at this time.

6.2 Design and Construction Data

There is no design or construction data available; therefore, an analysis of the structural stability could not be made.

6.3 Post Construction Changes

There are no known records of any post construction changes; however, through an informal conversation with a local resident the following changes and/or repairs were made to Schwartz Pond Dam. Originally the dam and spillway consisted of stone masonry, and were utilized by mills once located on each side. In the late 1920's the masonry structure was supposedly overlaid with concrete that still exists. During the visual inspection there was no evidence of this being the case, but since the pool level and/or water flow obscured most of the structure, a final conclusion could not be made at that time. Unknown repairs were also made to dam after its being damaged by the 1955 Flood.

6.4 Seismic Stability

The dam is located in Seismic Zone 1 and in accordance with Corps of Engineers' guidelines does not warrant further seismic analysis at this time.

ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES Section 7

7.1 Project Assessment

Т

1

a. Condition

Based upon the visual inspection of the site and past performance, the dam appears to be in fair condition. There was no evidence of any immediate structural instability problems; however, there are areas of concern requiring repair work and/or monitoring as noted in Sections 7.2 and 7.3.

Based upon "Preliminary Guidance for Estimating Maximum Probable Discharge" dated March, 1978, peak inflow to the lake is 9,500 cfs; peak outflow is 9,400 cfs, with the water level 2.3 feet above the dam crest. Based upon our hydraulic computations, the spillway capacity with the lake level to the top of dam is 3,300 cfs, which is equivalent to approximately 35% of the routed test flood outflow.

b. Adequacy of Information

The information available is such that an assessment of the condition and stability of the dam had to be based only on the visual inspection.

c. Urgency

It is recommended that the measures presented in Section 7.2 and 7.3 be implemented within one year of the owner's receipt of this report.

7.2 Recommendations

It is recommended that the owner employ a qualified registered engineer to:

- 1. Inspect and evaluate the condition of the concrete dam structures and the contact zone between the structures and rock base. The water level in the pond should be lowered so that a thorough inspection can be completed.
- 2. Determine the origin and significance of seepage under the sandstone wall located on the east side of the dam.

The owner should implement the recommendations of the engineer.

7.3 Remedial Measures

a. Operation and Maintenance Procedures

The following measures should be undertaken within the time period indicated in Section 7.1.c., and continued on a regular basis.

- A formal program of operation and maintenance procedures should be instituted and fully documented to provide accurate records for future reference.
- 2. Repair the wooden sluice gate and the winch mechanism of the regulating outlet.
- 3. Repair the areas of concrete deterioration at the east and west wingwalls, the regulating

outlet and the west dam embankment.

4. Fill in the void area immediately downstream of the west concrete dam embankment with earth.

7.4 Alternatives

This study has identified no alternatives to the above recommendations.

9 G													-
	80)* <u> </u>	p' 2.		35 reambo	65		15	2	7	5' B		ال
	F	E	7		G								SECTTO
	ام مرا ع	2											Ross
	9			-6		LONE	Y	row BRo	<u> </u>	EAM)			.
													1
G	101.69	43.33	76.67	85.9	77.5	28.78	71.5					!	
щ	1 1				1	- i	1	0	: :	1			
		4.40	18,42	+ c	5.0	0.0	0.6	146		;		: :	:
H. H. A. S. S. A. A. S. S. A. A. S.	102,73			t.s.	0.5	4.2	0.1.0	on Aye 4					:
		93.61	82.52	1. S. C.	0.5		CS2-6 11.0	inata on A					

					.:															_							
	-		10"			,													•					45	- ILO	on S. The	6.53
		n		5	60	٦ ا	4	D'-	25'		73				2.5				10	0'				7 202	- RON	4015 34	10u -3
								\ -E			4		70	•				À				8		ณ์	SUAD DAU	ري اري	SECTION
			· ·								1													2	У	87	C. R. 055
								CR		T O ì	りき	Y		Ro	. [1								OF MA	5	# U.S.	
										Loc	JZ.	IN	G	£) O		51	RE	AM	1				م م	P. 25.7) Z	Town I
							·													i				!			·
	E EU		38		74.77	84.90	84,56	チェルイ	74.46	- 89	74.3	67.9	59.62	73,51	+ <u>1</u>	87.8	\$45	96.	71 9 14	73,51	70.57	69.84	73,95	70,53			<u> </u>
	7		PAGE		>.80				4.97		2.9	9.3	17.6	3.72		イン								5.75			
	Ŧ		FROM	7573	94,90	92.80	40.05	78.92	77.23		!			87.46		; ;			: !	7-2-31	77,29	82.50	76.28			:	.
	8.5	: :: :	COUTTOUED		20.18	7.90	3.49	1.69	2.77		1	!		13.95	:	:		:	•	3.80		12.66	•		:	:	
40		1	Cour	-	TP-4	16-5	76-6	76-7	T P-8	C53-A	C53-B	7-857	C53- D	7P.9	C53-E	C53-F	6.53.6	C53-H	C53-T						:		
	,				. 1				· 	· 			<u> </u>	-		·	-		,			·			,		J.

BIBLIOGRAPHY

- 1. "Recommended Guildelines for Safety Inspection of Dams", Department of the Army, Office of the Chief Engineers, Washington, D.C. 20314, 1979.
- 2. <u>Design of Small Dams</u>, Revised Reprint, United States
 Department of the Interior, Bureau of Reclamation,
 United States Government Printing Office, Washington,
 D.C.
- 3. Soil Survey, Hartford County, Connecticut, United States
 Department of Agriculture, U.S. Government Printing
 Office, Washington, 25, D.C. 1962
- 4. Donald M. Gray: Handbook on the Principles of Hydrology, Water Information Center, 1970.
- 5. Hunter Rouse: Engineering Hydraulics, John Wiley and Sons, New York, 1950.
- 6. Victor L. Streeter: Fluid Mechanics, McGraw-Hill Book Company, Inc. 1958.
- 7. S.C.S. National Engineering Handbook, Hydrology Section 4, Soil Conservation Service, U.S. Department of Agriculture, 1972.

APPENDIX C

DETAIL PHOTOGRAPHS

Photo 1 - View looking west along the dam and spillway.

Photo 2 - View of spillway from bridge.

Note outlet works on left edge of spillway.

Photo 3 - View looking east across spillway.

Photo 4 - View of north end of east wingwall.
Note deteriorating concrete.

Photo 5 - View of spillway and west wingwall.

Photo 6 - View of southeast corner of west dam embankment. Note deteriorated concrete.

Photo 7 - View of northeast corner of west wingwall. Note deteriorated concrete.

Photo 8 - View of highway bridge and downstream channel (Stoney Brook). Note utility pipe suspended under bridge.

APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

CONSULTING ENGINEERS (CIVIL, HYDRAULICS, SANITARY)

827 MAPLEDALE ROAD, ORANGE, CT 06477 TEL: (203) 795-6562

TEST FLOOD

DRAINAGE AREA = 41.0 SQ. MILES

THE TERRAIN HAS AN AVERAGE SLOPE OF UNDER 1%.
THE DRAINAGE AREA CAN BE CLASSIFIED UNDER FLAT AND COASTAL' CATEGORY.

TAKING A FACTOR OF 840 FROM THE CORPS OF ENGINEERS CHART,

PMF = 540 × 41 = 22000 CFS.

SIZE AND HAZARD CLASSIFICATION

MAXIMUM HEIGHT OF THE DAM = 16 4.

MAXIMUM IMPOUNDMENT UPTO TOP

OF DAM = 150 AC.FT.

SIZE OF THE DAM = "SMALL"

THE HAZARD POTENTIAL IS LOW, THE DAM BREACH COMPUTATIONS INDICATE THAT THERE IS NO ADDITIONAL FLOODING DUE TO DAM BREACH AS COMPARED TO TEST FLOOD CONDITIONS.

AS PER TABLE 3 PAGES D-12 D-13 OF THE RECOMMENDED GUIDELINES FOR SAFETY INSPECTION OF DAMS! THE RECOMMENDED TEST FLOOD WILL BE 50 TO 100 YEAR FREQUENCY FLOOD.

USING CONNECTICUT FLOOD FLOW FORMULA

 $Q_{MEAN} = 0.85 \times A \times S$ = 0.85 × 41 × 53 = 1850 CFS

 $Q_{100} = 5 \times 1850$ = 9300 SAY 9500 CFS

APPENDIX A

INSPECTION CHECKLIST

VISUAL INSPECTION CHECK LIST PARTY ORGANIZATION

PROJECT Schwartz Pond Dam	DATE 12/17/80
	TIME Morning
	WEATHER Sunny 205
	W.S. ELEVU.SDN.S
PARTY:	
1. Ramesh P. Singhal (RS)	DISCIPLINE: Hydraulics
2. Ed Henderson (EH)	
3. Wesley J. Wolf (ww)	
4. Gerald Buckley (GB)	
5	
PROJECT FEATURE	INSPECTED BY
1. Dam Embankment	RS, EH, WW, GB
2. Spillway	
3. Regulating Outlet	
4.	
5	
6	
7	
8.	
9.	•
10	

PERIODIC INSPECTION CHECK LIST

PROJECT Schwartz Pond Dam	DATE	12/17/80
PROJECT FEATURE Dam Embankment	NAME	RS, EH, WW, GB
PROJECT FEATURE Dan Embankment including Miscellaneous Walls DISCIPLINE	NAME	

AREA ELEVATED	CONDITIONS
DAM EMBANKMENT	·
Crest Elevation	101.3 ± (NGVO)
Current Pool Elevation	96.2' 1 (NGVD)
Maximum Impoundment to Date	Unknown
Surface Cracks	None Observed
Pavement Conditions	N/A
Movement or settlement of crest	None Observed
Lateral movement	None Observed
Vertical alignment	Looks Good
Horizontal alignment	Looks Good
Conditions at abutment & at Comcrete Structures	Some Concrete Deteriora- tion of Wingwalls
Indications of Movement of Structural Items on Slopes	Stone Wall Tilted - East Side of Dam
Trespassing on Slopes	Pedestrian Only- No Sign
Sloughing or Erosion of Slopes or Abutments	None Observed
Rock Slope Protection-Riprap Failures	N/A
Unusual Movement or Cracking at or Near Toes	None Observed
Unusual Embankment or Downstream Seepage	Seepage Under Stone Wall at East Side of Dam
Piping or Boils	None Observed
Foundation Drainage Features	N/A
Toe Drains	N/A
Instrumentation System	N/A
	A-2

<u>...</u>

12

PERIODIC INSPECTION CHECK LIST

PROJECT Sch	nwartz Pond	Dam	·DATE	12/17/80	
PROJECT FEATURE	E Spillway Wei	<u>, </u>	NAME	RS EH WW GB	_
DISCIPLINE	Channels		NAME	, , , , , , , , , , , , , , , , , , , ,	_

AREA EVALUATED OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS Approach Channel General Condition Loose rock overhanging channel Trees Overhanging Channel Floor of Approach Channel Weir and trailing walls General Condition of Concrete Rust or Staining Spalling Any Visible Reinforcing Any Seepage or Efflorescence Drain Holes Discharge Channel

General Condition

Loose Rock Overhanging Channel

Trees Overhanging Channel

Floor of Channel

Other Obstructions

No Specific Channel. Fond at Spillway Good-Island in Center None Few on Island & West Wall Silt Bottom - Clean Spillway is Monolithic Concrete Fair None Observed Minor - Erosion Exposing Coarse Aggregate None None Observed (Would be obscured by water Flow) AVA Natural Channel Clean. None Few. Rocky, but Clean Highway Bridge with Sewen

Hung on Under Side

CONDITION

PROJECT Schwartz Pond Das PROJECT FFATURE Regulating Out	• •
DISCIPLINE	NAME
AREA EVALUATED	CONDITIONS
OUTLET WORKS - OUTLET STRUCTURE AND -	·
General Condition of Concrete Rust or Staining	Features of Regulating Outlet that are Visibleare
Spalling Erosion or Cavitation	D Opening in Face of Dan Concrete is Deteriorate
Visible Reinforcing Any Seepage or Efflorescence	© Front Face of Wooden Sluicegate-Leaking
Condition at Joints Drain Holes	3 Inoperable Mechanism to Lift Gate

Channel

Loose Rock or Trees Overhanging

Condition of Discharge Channel

Channe₁

Same as Channel for Spillway

Note: The Regulating Outlet Discharges Through 3'x 4'.
Opening at East End of Dam. Bottom of Opening is 7' Below Spillway Crest. Wooden Gate is Visible Through Opening.

APPENDIX B

ENGINEERING DATA

ENGINEERING DATA CHECKLIST

ITEM	AVAILABILITY	LOCATION
LOCATION MAP	Available	USGS Map
AS-BUILT DRAWINGS	Not Available	
HYDROLOGIC & HYDRAULIC DATA	Not Available	
SOIL BORINGS	Not Available	
SOIL TESTING	Not Available	
GEOLOGY REPORTS	Not Available	
CONSTRUCTION HISTORY	Not Available	
OPERATION RECORDS .	Not Available	
INSPECTION HISTORY	Not Available	
DESIGN REPORT	Not Available	· · · · · · · · · · · · · · · · · · ·
DESIGN COMPUTATIONS	Not Available	
HYDROLOGIC & HYDRAULIC	Not Available	
DAM STABILITY	Not Available	•
SEEPAGE ANALYSIS	Not Available	

						نر		 •					•	·		+ 1				******	·								
	33			CHISELED SOUNCE ON THE SWILL SUBJECT	S WING WALL	A A A A A A A A A A A A A A A A A A A	A CONTRACTOR OF TAXABLE AND A		E STUDY OF TOWN	12'N, FROM S END OF E AGT RETATION G WALL	BOTTOM OF GOOD AT SHOT	O OF EAST RETAI	TO T	B. L. M. C. WALL		0 0F (12 (100 AV (14 37))	PILL WAY	OF END OF FAST WINGWALL	EAM BROOK AT	OF STONE E, OF E.	OF STOAS	P 05 340 PE 25 E 540 F	TOP DE 6 800000 8 1000 CHOT ()		0 2 4 2 6 2	- L	18ED S. OF BRIDGE AT E.		
	< -1	JAM - TI	ELEV	101, 69 NGVD						100,21	94.9	100.35	92.9	.101.3	89.	46.13	86.0	45.62	0.98	91.0	94.8	41.0	12,0	200	-	107.4	1 -		
20%	7	QD	E.S.							6.33	و.	6.19	20.00	5.7	14.4	10.44	20,5	(0,9)	20.5	h: b:	11.7	4.5	1		2.5	0-	9		
	.	~	7	06.5														1	:										
10/01	027	HWAR	& S	9 4.85											·			!	-				1						
2) 12 hr/62	7	75		RM.9	:					1- TOHS	7	3	4	1, 2	و	1	<i>3</i> ~	-	င္	=		4	4	5	-0	12-	<i>∞</i>		
			~ ~~										·	B-2						-						· -		. 	

			£				4
K	F F F F F F F F F F F F F F F F F F F	LTURE	SATER TO		0	9	W786W
	10 M 1	SUPERSTRUCTI	2 1 4 4 4 4 4 4 4 4 4		AT SHOT	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 4
	BAIOGE AT	7 S E E	ALK W			2 4 5 7 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	й и 0
	S. 0F 18/27	BRIDGE SU 17'00, CI'S	WALKWAY, C WOODEAN WO RETA	Jas Ser	SOTTOM OF STREAM A TOP OF STONEWALL- I GROUND BELOW SHO TOP OF STONEWALL-S	SELOWS OWEWAL HOT BY	S K S
	7 = 20	242	-2.3	SOTTOM OF SPILL SOTTOM OF POND	р В В В В В В В В В В В В В В В В В В В	OF ST	900 B
_ :	STREAM	80770 70P	30 90 90T	4 1 4 4	10 2 5 10 8 5 10 8 5	6 Ro 6 Ro 10 C	Engl
1 m	86.4	94.3	9.8	95.3	86,3 101.7 97.4	90.0	86.9
S.	20.1	7.2 12.98 9.03	6.7	21.2	20.7 4.8 9.1	2 2 2 0 2 4 12 4	19.6
12.54 06.54							,
٠ <u>٠</u>							4.87
34	P 22	22 23 24	70 N	72 22 20 20 20 20 20 20 20 20 20 20 20 20	33 33 5	36 45 85 85 85 85 85 85 85 85 85 85 85 85 85	39 RM-9
•		i i i	. , , , , , , , , , , , , , , , , , , ,	•		i ! i !	'

Ļ

37				<u>-F1</u>	.		d;	50'	35	2	3'	7	, /	4	1 3	50'		7	-/		26				ì
					 					В		STre	مسر اد	ed			3			3		4 _E	lat		0
											Ą		E-	6			2		041	٠,					MCTTON
!						12 13 13					(R	υS			<u> </u>	ST	1	ΟN	1		1			2055 S
						E PAC	-		-			10	inte	S		NE	ow Y		RC						Ü
						\$ S													LIN						
- WJW - ETK		LTION	 			Nevo	Ц-	23	4	6		-2	4	ي	9	~	00	76	0	· (2)	> 250	1.4			
K-i	14W	15 SE	HOD	į, į	•	101.63			92.4			0,5						93.	15		5	00) <u> </u> 	 	·
Cloudy 40°	P 013 to	CR2	_ !	U) 		9.70		:	٠ د	5.4	p. 2	2	下87	下:5	0'3	5.5	ر ا	3.4	12.	2.5	6.9	5		
1017	•	REAM	STODE	-1	! •	102,67	12.8.	95.47						99.27				112.22		112.17] 				
18/57	SCWARTZ	COWNSTREAM	:	8.5		86'	5,73	7.29						15,67				24.62		0 '					
36 2/13/81	50	0	:			M-9	167	18-2	0-150	1:155	7-157	2-157	6-150	TP-3	Z:1:7	6-1-6	7-15	7-1P-4	0-130	76-5	RM-9	7.7			

SINGHAL ASSOCIATION

CONSULTIME FLAGATILISM (CIVIL, HYDRAGLICS, SALETALL)

827 MAPLEDALE ROAD, ORANGE, CYNER / 1 TEL: (203) 795-6562 3.26. 1981

SPILLWAY CAPACITIES

THE SPILLWAY CONSISTS OF THE FOLLOWING:

1- 3'X4' REGULATING OUTLET WITH ITS

BOTTOM AT ELEVATION 89.0

1- OVERFLOW SECTION OF DAM 86 FT. LONG

CREST ELEV. 96.0

SPILLWAY CAPACITIES AT VARIOUS ELEVATIONS ARE

TAPPLATED BELOW:

ELEVATION	CAF	ACITY - CF	
	LOW LEVEL 3 × 4 + 5 = 7 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	OVERFLOW SECTION OF DAM Q=3.0×1/2 H3/2 CFS	TOTAL - CFS
89.0	0.0	0.0	0.0
91.0	20.0	0.0	20.0
93.0	60.0	0.0	60.0
96.0	100.0	۵۰۰	100.0
98∙0	115.0	730.0	845-0
Ιούνο	130.0	2010.0	5500.0
102.0	140.0	3960.0	4100.0
105 0	155.0	13845.0	14,000.0

SINGHAL ASSOCIATES FOND DA SCHWA 10. April **CONSULTING ENGINEERS** 87 <u>R.B</u> (CIVIL, HYDRAULICS, SANITARY) 827 MAPLEDALE ROAD, ORANGE, CT 06477 TEL: (203) 795-6562 SPILLWAY CAPACITY SURVE TATAL 3200 1600

HEIGHT ABOVE CREST OF LOW LEVEL OUTLET

CONTRACTOR OF A MANUTARY)

827 MAPLEDALE GOAD, ORANGE, CT 06477 TEL: (203) 795-6562

Job_	SCHWARTZ	POND	DAN
Sheet	Number D-	- 4	
Date	3,27.19	180	
By	Ris		

RESERVOIR WATER SURFACE ELEVATION	HEIGHT AROVE SPILLWAY CREST	WATER SURFACE AREA (ACS)	SURCHARGE STURAGE C APACITY (AC-FT-)
96.0	0,0	11.5	0.0
98.0	7-0	14-4	22.0
100.0	4.0	17.2	43.0
102.0	6.0	19.5	93.0
105 .0	8.0	23.0	(43.0

N.B. STORAGE CAPACITY BELOW SPILLWAY CREST = 77 AC-FT.

CONSULTING ENGINEERS (CIVIL, HYDRAULICS, SANTARY) JOB SCHWARTZ POND DAI nber D-5 3·27·1981 Sheet Number RIS By

827 MAPLEDALE ROAD, ORANGE, CT 06477

SURFACE

CONSULTING ENGINEERS (CIVIL, HYDRAULICS, SANITARY)

827 MAPLEDALE ROAD, ORANGE, CT 06477 TEL: (203) 795-6562 Job SCHWARTZ POND DAM
Sheet Number D-6
Date 3. 27. 1981
By R.S.

INFLOW, ROUTED OUTFLOW & ADEQUACY OF SPILLWAY CAPACITY

TEST FLOOD = 9,500 CFS.

SPILLWAY CAPACITY UPTO TOP OF DAM (ELEV. 101.3) = 3300 CFS
THIS IS INADEQUATE AND THE DAM WILL BE OVERTOPPED.

IN ORDER TO PASS THE TEST FLOOD, THE WATER LEVEL WILL RISE TO ELEVATION 103.6 WHICH IS 2.3 FT. ABOVE THE CREST ELEVATION OF THE DAM (101.3). THIS DOES NOT TAKE INTO CONSIDERATION, THE EFFECT OF SURCHARGE STORAGE.

EFFECT OF SURCHARGE STORAGE ON PEAK OUTFLOW

FOR QPI = 9,500 CFS, HEIGHT ABOVE CREST OF SPILLWAY = 7.6 FT.

AND SURCHARGE STURAGE = 133 AC.FT.

WHICH CORRESPONDS TO A DEPTH $= \frac{133 \times 12}{41 \times 640} = 0.06''$

 $Q_{p_2} = Q_{p_1} \left(1 - \frac{0.06}{7.0} \right) = 9500 \times 0.991$ = 9400 CFS

THE AVAILABLE STORAGE IS VERY SMALL AND THE OUTFLE ALMOST EQUALS THE INFLOW.

103.6 - 101.3 = 2.3 FT.

THE MAXIMUM SPILLWAY CAPACITY UPTO TOP OF THE DAM EQUALS 3300 WHICH IS 35% OF THE ROUTED OUTFLOW RATE.

CONSULTING ENGINEERS (CIVIL, HYDRAULICS, SANITARY)

827 MAPLEDALE ROAD, ORANGE, CT 06477 TEL: (203) 795-6562

Job	SCHWARTZ	POND	DAM
Sheet	Number D-	7	
Date_	3.27-198	3 }	
By	R·S.		

DAM FAILURE FLOOD FLOW

AS PER CORPS OF ENGINEERS GUIDELINES:

. QPI - DAM FAILURE PEAK OUTFLOW IN CFS

Wb = BREACH WIDTH = 40% OF DAM LENGTH AT MID- HEIGHT.

Yo = HEIGHT FROM STREAMBED TO POOL LEVEL AT

SUBSTITUTING KNOWN VALUES OF WE AND YO AS $0.4 \times 128^{\prime} = 50$ FT, AND 16 FT. RESPECTIVELY - THE FAILURE ASSUMED WITH POOL AT TOP OF DAM ELEVATION 101.3:

$$Q_{P_1} = \frac{8}{27} \times 50 \times \sqrt{32.2} \times 16^{3/2}$$

= 5400 CFS (APPROX.)

NOTE: THE ROUTED TEST FLOOD FLOW OF

9,400 CFS BEING LARGER IN VALUE, WILL

BE USED FOR DOWNSTREAM HAZARD

ANALYSIS

CONSULTING ENGINEERS

(CIVIL, HYDRAULICS, SANITARY)

JOB SCHWARTZ POND DAM Sheet Number 3.30,1981 Date R.S. Ву

827 MAPLEDALE ROAD, ORANGE, CT 06477

TEL: (203) 795-6562 HAZARD DOWNSTREAM FLOOD 5+0 X- SECTION #1 STA V=148 R352 R (4/4...) ELE V. D Pw A Q (FT) FT (5.4.) (FT) FT/FT (CFS) (FT./SEC) FT 850 956 3.6 2.5 4.70 80 200 4-8 5200 7.26 8-6 90.0 150 726 6.0039 62000 5.4 95.0 7.85 13.6 1450 7850 16 14 12 DEPTH (FT) 10 β 4 <u> 50</u> 20 0 1000 975 16 14 12 DEPTH (FT.) 10 4 යි 10 Z 4 12 A-1000 SF.

CONSULTING ENGINEERS (CIVIL, HYDRAULICS, SANITARY)

(CIVIL, HTDRAULICS, SANITART)

Job SCHWARTZ POND DAI Sheet Number · Date 3-30-1981 By R.S.

Ву 827 MAPLEDALE ROAD, ORANGE, CT 06477 TEL: (203) 795-6562 HAZARD FLUOD DOWNSTREAM STA 27+0 # 7 SECTION V=1.45 (5 2 ELEV. Pw R=A/PW Q D (FT) S/F) (FT) FT/FT (FT./SFC-) (¢=\$) (FT) (FT) 1015 1.32 3.07 75.0 75b 330 15 400 80.0 8.5 010036 7.56 2040 510 5.69 8.13 53000 histo 85.0 13.5 4540 16 14 12 10 6 4 2 0-7 1000 CFS 10 GO 10 20 <u> 30</u> 16 14 12 10 8 4 A - 1000 S.F. 6

D-13

SINGHAL ASSOCIATES

CONSULTING ENGINEERS

(CIVIL, HYDRAULICS, SANITARY)

Job SCHWARTZ POND Sheet Number Date 3.30.1981 R.S. By

CONSULTING ENGINEERS (CIVIL, HYDRAULICS, SANITARY)

Job_	SCHWARTZ	ROND	DAN
Sheet	Number		
Date	3.30.	1981	
By	K.S.		

827 MAPLEDALE ROAD, ORANGE, CT 06477 TEL: (203) 795-6562

DOWNSTREAM FLOOD HAZAPD

(UNDER TEST FLOOL 9400 CFS WHICH EXCEEDS DAM FAILI)

X- SECTION #1 STA 5+0

FOR QD = 9400 CFS

FOR QP = 9400 CFS H = 9.0' AND A = 1240 SF

REACH LENGTH = 500

STORAGE = 500 × 1240 /43560 = 14 AC FT.

 $Q_{p_2} = Q_{p_1} \left(1 - \frac{14}{150} \right) = 9400 \times 0.91 = 8550 CFS.$

H2 = 8.9' AND A2 = 1130 SF.

STORAGE = 500 x 1130 /43560 = 13 AC. FT. AVG STORAGE = 1/2 (13+14) = 13.5 AC. FT

 $Q_{P3} = Q_{P1} \left(1 - \frac{13.5}{150}\right) = 94,00 \times 0.91 = 8,550 \text{ CFS.}$

THE ROUTED FLOW BELOW X- SECTION #1
WILL BE APPROX. 8,550 CFS.

AND DEPTH OF FLOW = 8.9

FLOOD ELEVATION = 81.4 +8.9 = 90.3

CONSULTING ENGINEERS (CIVIL, HYDRAULICS, SANITARY)

Job SCHWARTZ POND DA Sheet Number Date 3.30.1981 By R.S.

827 MAPLEDALE ROAD, ORANGE, CT 06477 TEL: (203) 795-6562

DOWNSTREAM FLOOD HAZARI

X- SECTION #2 STA. 27+0

FOR Qp = 8550 CFS

HI = 6.1' AND A = 1220 SF.

REACH LENGTH = 2200' STORAGE = 2200 x 1220 /43 560

= 62 AC-FT.

QPZ = QPI (1-62) = 8550 × 0.59 = 5050 CFS

 $H_{z}=4.9$ $A_{z}=806$ S.F.

STORAGE = 806 X2200/43560 = 41 AC.FT.

AVG. STORAGE = 1/2 (41+62) = 52 AC.FT.

 $QP_3 = QP_1 \left(1 - \frac{52}{150}\right) = 8550 \times 0.65 = 5600$ CFS $H_3 = 5.0'$

ROUTED FLOW BELOW X- SEC. # 2 WILL

BE APPROXIMATELY 5600 CFS

FLOOD ELE VATION = 71.5 +50

CONSULTING ENGINEERS (CIVIL, HYDRAULICS, SANITARY)

827 MAPLEDALE ROAD, ORANGE, CT 06477 TEL: (203) 795-6562

Job	SCHWARTZ	POND	DAM
Sheet	Number		
Date_	3.30.19	186	
Ву	R.S.		

DOWNSTREAM FLOOD HAZARD
X- SECTION #3 STA- 50+0

FOR QP = 5600

HI = 7.1 AND A = 757 S.F.

REACH LENGTH = 2300 FT.

STORAGE = 2300 x 757 /43560 = 40 AC FT.

PPZ= PP1 (1- 部) = 5600 × 0.73 = 4100 CFS

 $H_2 = 6.0'$ AND $A_2 = 550$

STORAGE = 550 x 2300 /43560 = 29 AC.FT.

AVG. STORAGE = /2(29+40) = 34.5 AC.FT.

 $Q_{P3} = Q_{P1} (1 - \frac{34.5}{150}) = 5600 \times 0.77 = 4300 CFS...$ AND $H_3 = 6.2'$

ROUTED FLOW BELOW X-SEC. #3 WILL

BE 4,300 CFS. APPROXIMATELY

FLOOD FLOW ELEVATION

= 59.0+6.2 = 65.2

SAY 65.0

NOTE: THERE IS NO FLOODING HAZARD

UNDER TEST FLOOD CONDITIONS EXCEPT

PARTIAL FLOODING OF ONE HOUSE.

THE DAM BREACH FLOOD FLOW
BEING SMALLER THAN TEST FLOOD
WILL NOT PRODUCE ADDITIONAL HAZARD

APPENDIX E

INFORMATION AS CONTAINED IN
THE NATIONAL INVENTORY OF DAMS

